储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2302-2318.doi: 10.19799/j.cnki.2095-4239.2023.0296
收稿日期:
2023-05-04
修回日期:
2023-05-17
出版日期:
2023-07-05
发布日期:
2023-07-25
通讯作者:
丁飞
E-mail:1280196469@qq.com;hilldingfei@163.com
作者简介:
昝文达(1999—),男,硕士研究生,主要研究方向为锂离子电池三维重构及仿真,E-mail:1280196469@qq.com;
基金资助:
Wenda ZAN(), Rui ZHANG, Fei DING()
Received:
2023-05-04
Revised:
2023-05-17
Online:
2023-07-05
Published:
2023-07-25
Contact:
Fei DING
E-mail:1280196469@qq.com;hilldingfei@163.com
摘要:
锂离子电池是一个复杂的多尺度、多物理场系统。利用电化学仿真的方法可以模拟电池内部发生的化学、物理过程,预测电池行为,为优化电池系统设计提供理论支撑,从而减少电池开发的时间和成本。本文通过对相关文献的探讨,总结了电化学模型及其衍生模型,包括单颗粒模型、准二维模型、三维模型以及介观尺度模型,并介绍了几种重要的电化学模型参数的获取方法。对于电化学模型的不同使用场景,本文总结了电化学模型在锂离子电池内部温度与应力分析、寿命仿真和微观结构设计中的应用。介绍了利用模型研究电池内部锂离子浓度、电势和电化学反应速率的分布;归纳了利用耦合多物理场电化学模型模拟电池内部温度和应力分布,并预测电池运行期间的退化;总结了通过介观尺度电化学模型研究微观结构、参数对电池性能的影响,并为电极结构设计提供指导。综合分析表明,电化学模型在电池内部机理分析上有着很大的优势。最后,本文展望了锂离子电池电化学模型的发展方向。
中图分类号:
昝文达, 张睿, 丁飞. 锂离子电池电化学模型发展与应用[J]. 储能科学与技术, 2023, 12(7): 2302-2318.
Wenda ZAN, Rui ZHANG, Fei DING. Development and application of electrochemical models for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318.
1 | NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. |
2 | KIM T, SONG W T, SON D Y, et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7): 2942-2964. |
3 | NEJAD S, GLADWIN D T, STONE D A. A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states[J]. Journal of Power Sources, 2016, 316: 183-196. |
4 | MENG J H, LUO G Z, RICCO M, et al. Overview of lithium-ion battery modeling methods for state-of-charge estimation in electrical vehicles[J]. Applied Sciences, 2018, 8(5): 659. |
5 | BERGVELD H J, KRUIJT W S, NOTTEN P H L. Electronic-network modelling of rechargeable NiCd cells and its application to the design of battery management systems[J]. Journal of Power Sources, 1999, 77(2): 143-158. |
6 | DOYLE M, NEWMAN J, GOZDZ A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890-1903. |
7 | 杨东辉, 吴贤章, 王羽平, 等. 锂离子电池电化学仿真技术综述[J]. 储能科学与技术, 2021, 10(3): 1060-1070. |
YANG D H, WU X Z, WANG Y P, et al. Overview of electrochemical simulation technology for lithium ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 1060-1070. | |
8 | 杨杰, 王婷, 杜春雨, 等. 锂离子电池模型研究综述[J]. 储能科学与技术, 2019, 8(1): 58-64. |
YANG J, WANG T, DU C Y, et al. Overview of the modeling of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(1): 58-64. | |
9 | 程昀, 李劼, 贾明, 等. 锂离子电池多尺度数值模型的应用现状及发展前景[J]. 物理学报, 2015, 64(21): 145-160. |
CHENG Y, LI J, JIA M, et al. Application status and future of multi-scale numerical models for lithium ion battery[J]. Acta Physica Sinica, 2015, 64(21): 145-160. | |
10 | EULER J, NONNENMACHER W. Stromverteilung in porösen elektroden[J]. Electrochimica Acta, 1960, 2(4): 268-286. |
11 | NEWMAN J S, TOBIAS C W. Theoretical analysis of current distribution in porous electrodes[J]. Journal of the Electrochemical Society, 1962, 109(12): 1183. |
12 | NEWMAN J, CHAPMAN T W. Restricted diffusion in binary solutions[J]. AIChE Journal, 1973, 19(2): 343-348. |
13 | NEWMAN J, TIEDEMANN W. Porous-electrode theory with battery applications[J]. AIChE Journal, 1975, 21(1): 25-41. |
14 | CHEN Z Q, DANILOV D L, EICHEL R A, et al. Porous electrode modeling and its applications to Li-ion batteries[J]. Advanced Energy Materials, 2022, 12(32): doi: 10.1002/aenm.202201506. |
15 | DU S L, LAI Y Q, AI L, et al. An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method[J]. Applied Thermal Engineering, 2017, 121: 501-510. |
16 | ZHANG X C, SHYY W, MARIE SASTRY A. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles[J]. Journal of the Electrochemical Society, 2007, 154(10): A910. |
17 | 邵素霞, 朱振东, 彭文. 锂离子电池电极材料反应速率常数研究[J]. 电池工业, 2020, 24(4): 179-183. |
SHAO S X, ZHU Z D, PENG W. The study on reaction rate constant of electrode materials in lithium ion batteries[J]. Chinese Battery Industry, 2020, 24(4): 179-183. | |
18 | 马克华. 锂离子电池参数获取及变参数模型[D]. 哈尔滨: 哈尔滨工业大学. |
MA K H. Parameter acquisition and variable parameter model of lithium ion battery[D]. Harbin: Harbin Institute of Technology. | |
19 | 邵素霞, 朱振东, 王蓉蓉, 等. 三种方法测定电极材料的扩散系数[J]. 电池, 2021, 51(6): 577-581. |
SHAO S X, ZHU Z D, WANG R R, et al. Characterizing diffusion coefficient of electrode materials by three methods[J]. Battery Bimonthly, 2021, 51(6): 577-581. | |
20 | JIANG F M, PENG P. Elucidating the performance limitations of lithium-ion batteries due to species and charge transport through five characteristic parameters[J]. Scientific Reports, 2016, 6: doi: 10.1038/srep32639. |
21 | MALIFARGE S, DELOBEL B, DELACOURT C. Experimental and modeling analysis of graphite electrodes with various thicknesses and porosities for high-energy-density Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(7): A1275-A1287. |
22 | COLCLASURE A M, TANIM T R, JANSEN A N, et al. Electrode scale and electrolyte transport effects on extreme fast charging of lithium-ion cells[J]. Electrochimica Acta, 2020, 337: doi: 10.1016/j.electacta.2020.135854. |
23 | XU M, REICHMAN B, WANG X. Modeling the effect of electrode thickness on the performance of lithium-ion batteries with experimental validation[J]. Energy, 2019, 186: doi: 10.1016/j.energy.2019.115864. |
24 | GOUTAM S, NIKOLIAN A, JAGUEMONT J, et al. Three-dimensional electro-thermal model of li-ion pouch cell: Analysis and comparison of cell design factors and model assumptions[J]. Applied Thermal Engineering, 2017, 126: 796-808. |
25 | SAW L H, YE Y H, TAY A A O. Electrochemical-thermal analysis of 18650 Lithium Iron Phosphate cell[J]. Energy Conversion and Management, 2013, 75: 162-174. |
26 | LIN N, RÖDER F, KREWER U. Multiphysics modeling for detailed analysis of multi-layer lithium-ion pouch cells[J]. Energies, 2018, 11(11): 2998. |
27 | MEI W X, LIANG C, SUN J H, et al. Three-dimensional layered electrochemical-thermal model for a lithium-ion pouch cell[J]. International Journal of Energy Research, 2020, 44(11): 8919-8935. |
28 | TRANTER T G, TIMMS R, HEENAN T M M, et al. Probing heterogeneity in Li-ion batteries with coupled multiscale models of electrochemistry and thermal transport using tomographic domains[J]. Journal of the Electrochemical Society, 2020, 167(11): doi: 10.1149/1945-7111/aba44b. |
29 | 胡力月, 姚行艳. 基于正交试验的锂离子电池热失控仿真[J]. 储能科学与技术, 2023, 12(4): 1268-1277. |
HU L Y, YAO X Y. Thermal runaway of lithium-ion batteries based on orthogonal test[J]. Energy Storage Science and Technology, 2023, 12(4): 1268-1277. | |
30 | KIM G H, PESARAN A, SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170(2): 476-489. |
31 | FENG X N, LU L G, OUYANG M G, et al. A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115: 194-208. |
32 | CHRISTENSEN J, NEWMAN J. Stress generation and fracture in lithium insertion materials[J]. Journal of Solid State Electrochemistry, 2006, 10(5): 293-319. |
33 | RENGANATHAN S, SIKHA G, SANTHANAGOPALAN S, et al. Theoretical analysis of stresses in a lithium ion cell[J]. Journal of the Electrochemical Society, 2010, 157(2): A155. |
34 | SUN F N, FENG L, BU J H, et al. Effect of stress on electrochemical performance of hollow carbon-coated silicon snode in lithium ion batteries[J]. Acta Physica Sinica, 2019, 68(12): 120201. |
35 | MAI W J, YANG M, SOGHRATI S. A particle-resolved 3D finite element model to study the effect of cathode microstructure on the behavior of lithium ion batteries[J]. Electrochimica Acta, 2019, 294: 192-209. |
36 | BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341: 373-386. |
37 | PASTOR-FERNÁNDEZ C, UDDIN K, CHOUCHELAMANE G H, et al. A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems[J]. Journal of Power Sources, 2017, 360: 301-318. |
38 | YANG X G, LENG Y J, ZHANG G S, et al. Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging[J]. Journal of Power Sources, 2017, 360: 28-40. |
39 | NAUMANN M, SPINGLER F B, JOSSEN A. Analysis and modeling of cycle aging of a commercial LiFePO4/graphite cell[J]. Journal of Power Sources, 2020, 451: doi: 10.1016/j.jpowsour.2019.227666. |
40 | KEIL J, JOSSEN A. Electrochemical modeling of linear and nonlinear aging of lithium-ion cells[J]. Journal of the Electrochemical Society, 2020, 167(11): doi: 10.1149/1945-7111/aba44f. |
41 | ZHANG M H, CHOUCHANE M, ALI SHOJAEE S, et al. Coupling of multiscale imaging analysis and computational modeling for understanding thick cathode degradation mechanisms[J]. Joule, 2023, 7(1): 201-220. |
42 | KINDERMANN F M, KEIL J, FRANK A, et al. A SEI modeling approach distinguishing between capacity and power fade[J]. Journal of the Electrochemical Society, 2017, 164(12): E287-E294. |
43 | XU R, YANG Y, YIN F, et al. Heterogeneous damage in Li-ion batteries: Experimental analysis and theoretical modeling[J]. Journal of the Mechanics and Physics of Solids, 2019, 129: 160-183. |
44 | LIU P F, XU R, LIU Y J, et al. Computational modeling of heterogeneity of stress, charge, and cyclic damage in composite electrodes of Li-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(4): doi: 10.1149/1945-7111/ab78fa. |
45 | BOYCE A M, MARTÍNEZ-PAÑEDA E, WADE A, et al. Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling[J]. Journal of Power Sources, 2022, 526: doi: 10.1016/j.jpowsour.2022.231119. |
46 | CHOUCHANE M, FRANCO A A. Deconvoluting the impacts of the active material skeleton and the inactive phase morphology on the performance of lithium ion battery electrodes[J]. Energy Storage Materials, 2022, 47: 649-655. |
47 | LIU C Y, LOMBARDO T, XU J H, et al. An experimentally-validated 3D electrochemical model revealing electrode manufacturing parameters' effects on battery performance[J]. Energy Storage Materials, 2023, 54: 156-163. |
48 | BOYCE A M, LU X K, BRETT D J L, et al. Exploring the influence of porosity and thickness on lithium-ion battery electrodes using an image-based model[J]. Journal of Power Sources, 2022, 542: doi: 10.1016/j.jpowsour.2022.231779. |
49 | LOMBARDO T, NGANDJONG A C, BELHCEN A, et al. Carbon-binder migration: A three-dimensional drying model for lithium-ion battery electrodes[J]. Energy Storage Materials, 2021, 43: 337-347. |
50 | NGANDJONG A C, LOMBARDO T, PRIMO E N, et al. Investigating electrode calendering and its impact on electrochemical performance by means of a new discrete element method model: Towards a digital twin of Li-Ion battery manufacturing[J]. Journal of Power Sources, 2021, 485: doi: 10.1016/j.jpowsour.2020.229320. |
51 | LU X K, BERTEI A, FINEGAN D P, et al. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling[J]. Nature Communications, 2020, 11: 2079. |
52 | LU X K, DAEMI S R, BERTEI A, et al. Microstructural evolution of battery electrodes during calendering[J]. Joule, 2020, 4(12): 2746-2768. |
53 | DI DOMENICO D, STEFANOPOULOU A, FIENGO G. Lithium-ion battery state of charge and critical surface charge estimation using an electrochemical model-based extended Kalman filter[J]. Journal of Dynamic Systems, Measurement, and Control, 2010, 132(6): 1. |
54 | LI W H, FAN Y, RINGBECK F, et al. Electrochemical model-based state estimation for lithium-ion batteries with adaptive unscented Kalman filter[J]. Journal of Power Sources, 2020, 476: doi: 10.1016/j.jpowsour.2020.228534. |
55 | FATHIANNASAB H, GHORBANI KASHKOOLI A, LI T Y, et al. Three-dimensional modeling of all-solid-state lithium-ion batteries using synchrotron transmission X-ray microscopy tomography[J]. Journal of the Electrochemical Society, 2020, 167(10): doi: 10.1149/1945-7111/ab9380. |
56 | FATHIANNASAB H, ZHU L K, CHEN Z W. Chemo-mechanical modeling of stress evolution in all-solid-state lithium-ion batteries using synchrotron transmission X-ray microscopy tomography[J]. Journal of Power Sources, 2021, 483: doi: 10.1016/j.jpowsour. 2020.229028. |
57 | ZHANG T, MARINESCU M, WALUS S, et al. Modelling transport-limited discharge capacity of lithium-sulfur cells[J]. Electrochimica Acta, 2016, 219: 502-508. |
[1] | 郝增辉, 刘训良, 孟缘, 孟楠, 温治. 电极界面微观结构对固态锂离子电池性能的影响[J]. 储能科学与技术, 2023, 12(7): 2095-2104. |
[2] | 张青松, 包防卫, 牛江昊. 环境压力对锂电池热失控产气及爆炸风险的影响[J]. 储能科学与技术, 2023, 12(7): 2263-2270. |
[3] | 陈智伟, 张维戈, 张珺玮, 张言茹. 基于视觉特征的动力电池组综合健康评估及分筛方法[J]. 储能科学与技术, 2023, 12(7): 2211-2219. |
[4] | 张宇波, 王有元, 黄洞宁, 王子懿, 陈伟根. 面向变工况条件的锂离子电池寿命退化预测方法[J]. 储能科学与技术, 2023, 12(7): 2238-2245. |
[5] | 徐冲, 徐宁, 蒋志敏, 李中凯, 胡洋, 严红, 马国强. 锂离子电池产气机制及基于电解液的抑制策略[J]. 储能科学与技术, 2023, 12(7): 2119-2133. |
[6] | 陈钦佩, 王学辉, 米文忠. 电动汽车锂离子电池系统热失控气体毒害及爆炸特性研究[J]. 储能科学与技术, 2023, 12(7): 2256-2262. |
[7] | 吴宜琨, 何杰, 杨乐, 宋维力, 陈浩森. 锂离子电池多物理场多尺度变形理论模型与计算方法[J]. 储能科学与技术, 2023, 12(7): 2141-2154. |
[8] | 管鸿盛, 钱诚, 徐炳辉, 孙博, 任羿. 融合自注意力机制与门控循环单元网络的宽工况锂离子电池SOC估计[J]. 储能科学与技术, 2023, 12(7): 2229-2237. |
[9] | 范茂松, 耿萌萌, 赵光金, 杨凯, 王放放, 刘皓. 基于多频点阻抗的梯次利用电池分选技术研究[J]. 储能科学与技术, 2023, 12(7): 2202-2210. |
[10] | 李晋, 王青松, 孔得朋, 王晓冬, 俞振华, 乐艳飞, 黄鑫炎, 胡振恺, 吴候福, 方华斌, 曹伟, 张少禹, 卓萍, 陈晔, 李紫婷, 梅文昕, 张越, 赵丽香, 唐亮, 黄宗侯, 陈篪, 刘彦辉, 储玉喜, 许晓元, 张晋, 李贻恺, 冯蓉, 杨标, 户波, 杨晓滢. 锂离子电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(7): 2282-2301. |
[11] | 张佳怡, 翁素婷, 王兆翔, 王雪锋. 石墨负极界面SEI膜与锂离子电池热失控[J]. 储能科学与技术, 2023, 12(7): 2105-2118. |
[12] | 刘书琴, 王小燕, 张振东, 段振霞. 锂离子电池组液冷式热管理系统的设计及优化[J]. 储能科学与技术, 2023, 12(7): 2155-2165. |
[13] | 陈育新, 杨家沐, 练成, 刘洪来. 基于相场模型的锂电池电极浆料稳定涂布窗口分析[J]. 储能科学与技术, 2023, 12(7): 2185-2193. |
[14] | 杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J]. 储能科学与技术, 2023, 12(7): 2166-2184. |
[15] | 黄凌锋, 韩东梅, 黄盛, 王拴紧, 肖敏, 孟跃中. 含有机硼的锂离子电池聚合物电解质的研究进展[J]. 储能科学与技术, 2023, 12(6): 1815-1830. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||