储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2282-2301.doi: 10.19799/j.cnki.2095-4239.2023.0252

• 储能锂离子电池系统关键技术专刊 • 上一篇    下一篇

锂离子电池储能安全评价研究进展

李晋1,7,10(), 王青松2(), 孔得朋3(), 王晓冬4(), 俞振华5, 乐艳飞6, 黄鑫炎8, 胡振恺9, 吴候福11, 方华斌12, 曹伟13, 张少禹1,7,10, 卓萍1,7,10(), 陈晔1,7,10, 李紫婷1,7,10, 梅文昕2, 张越3, 赵丽香4, 唐亮5, 黄宗侯2, 陈篪6, 刘彦辉8, 储玉喜1,7,10, 许晓元1,7,10, 张晋1,7,10, 李贻恺9, 冯蓉11, 杨标12, 户波13, 杨晓滢1,7,10   

  1. 1.应急管理部天津消防研究所,天津 300381
    2.中国科学技术大学火灾科学国家重点实验室,安徽 合肥 230026
    3.中国石油大学(华东),山东 青岛 266555
    4.中国电子技术标准化 研究院,北京 100171
    5.中关村储能产业技术联盟,北京 102629
    6.苏州UL美华认证 有限公司,江苏 苏州 215000
    7.工业与公共建筑火灾防控技术应急管理部重点实验室,天津 300381
    8.香港理工大学消防安全工程研究中心,香港 九龙 999077
    9.南方电网调峰调频发电有限公司储能科研院,广东 广州 510630
    10.天津市消防安全技术重点实验室,天津 300381
    11.广州鹏辉能源科技股份有限公司,广州 广东 511400
    12.北京卫蓝新能源科技有限公司,北京 102600
    13.阳光储能技术有限公司,安徽 合肥 230601
  • 收稿日期:2023-04-25 修回日期:2023-06-05 出版日期:2023-07-05 发布日期:2023-07-25
  • 通讯作者: 李晋 E-mail:lijin@tfri.com.cn;pinew@ustc.edu.cn;kongdepeng@upc.edu.cn;wangxd@cesi.cn;zhuoping@tfri.com.cn
  • 作者简介:李晋(1966—),男,硕士,研究员,主要从事危险化学品火灾、建筑防火、消防标准化和消防安全评估工作,E-mail:lijin@tfri.com.cn
    王青松,研究员,主要从事锂离子电池火灾安全领域相关研究,E-mail:pinew@ustc.edu.cn
    孔得朋,教授,主要从事油气及新能源安全相关研究,E-mail:kongdepeng@upc.edu.cn
    王晓冬,高级工程师,主要从事锂电池及电子产品标准化研究,E-mail:wangxd@cesi.cn
    卓萍,副研究员,主要从事电池安全及标准化研究,E-mail:zhuoping@tfri.com.cn
    第一联系人:共同第一作者
    唐亮,工程师,主要研究方向为储能安全与标准,E-mail:liang.tang@cnesa.org
  • 基金资助:
    国际锂离子电池储能安全评价关键技术合作研发(2022YFE0207400)

Research progress on the safety assessment of lithium-ion battery energy storage

Jin LI1,7,10(), Qingsong WANG2(), Depeng KONG3(), Xiaodong WANG4(), Zhenhua YU5, Yanfei LE6, Xinyan HUANG8, Zhenkai HU9, Houfu WU11, Huabin FANG12, Caowei13, Shaoyu ZHANG1,7,10, Ping ZHUO1,7,10(), Ye CHEN1,7,10, Ziting LI1,7,10, Wenxin MEI2, Yue ZHANG3, Lixiang ZHAO4, Liang TANG5, Zonghou HUANG2, Chi CHEN6, Yanhu LIU8, Yuxi CHU1,7,10, Xiaoyuan XU1,7,10, Jin ZHANG1,7,10, Yikai LI9, Rong FENG11, Biao YANG12, Bo HU13, Xiaoying YANG1,7,10   

  1. 1.Tianjin Fire Research Institute of Emergency Management Department, Tianjin 300381, China
    2.State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui, China
    3.China University of Petroleum(East China), Qingdao 266555, Shandong, China
    4.China Electronics Standardizations Institute, Beijing 100171, China
    5.China Energy Storage Alliance, Beijing 102629, China
    6.UL -CCIC Company Limited, Suzhou 215000, Jiangsu, China
    7.Key Laboratory of Fire Protection Technology for Industry and Public Building, Ministry of Emergency Management, Tianjin 300381, China
    8.Research Centre for Fire Safety Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
    9.Power Storage Research Institute, Guangzhou 510630, Guangdong, China
    10.Tianjin Key Laboratory of Fire Safety Technology, Tianjin 300381, China
    11.Guangzhou Great Power Energy & Technology Company Limited, Guangzhou 511400, Guangdong, China
    12.Beijing Weilan New Energy Technology Company Limited, Beijing 102600, China
    13.Sungrow Energy Storage Technology Company Limited, Hefei 230601, Anhui, China
  • Received:2023-04-25 Revised:2023-06-05 Online:2023-07-05 Published:2023-07-25
  • Contact: Jin LI E-mail:lijin@tfri.com.cn;pinew@ustc.edu.cn;kongdepeng@upc.edu.cn;wangxd@cesi.cn;zhuoping@tfri.com.cn

摘要:

本文针对目前锂离子电池储能安全评价研究进展进行了综述,梳理了锂离子电池储能安全评价相关标准现状,从电池本征安全、储能故障及事故统计、热失控机理及火蔓延机制等方面总结了锂离子电池储能安全评价相关理论的研究进展,分析了从锂离子电池单体到储能系统的安全评价数值模拟技术,系统介绍了电池单体到储能系统的安全测试评价技术以及锂离子电池储能电站安全评价技术的现状。研究结果表明,随着电池技术的不断迭代,储能系统结构的不断升级,储能的安全评价将愈发复杂,现有的评价技术和标准有待进一步提升和完善。未来,需要根据储能电池本质安全、电气与消防安全等技术的发展及时调整与更新安全评价指标,结合仿真、实验手段的进步,明确安全指标阈值,并充分考虑储能系统投运后容量衰减、老化过程伴随的安全性能演变,构建覆盖多体系、多场景、多要素,融合动静态指标的安全性能等级评价体系,发展涵盖“单体-模组-簇-系统-电站”层层分级的储能系统安全性能等级评价技术。同时,制定国际适用的储能系统安全性能等级评价标准,为全球储能安全提供中国方案。

关键词: 锂离子电池, 储能, 安全评价技术, 储能安全标准

Abstract:

In this study, research progress on safety assessment technologies of lithium-ion battery energy storage is reviewed. The status of standards related to the safety assessment of lithium-ion battery energy storage is elucidated, and research progress on safety assessment theories of lithium-ion battery energy storage is summarized in terms of battery intrinsic safety, energy storage failure and accident statistics, thermal runaway mechanism, and fire spread mechanism. Numerical simulations and safety assessment technologies from lithium-ion battery cells to energy storage systems are analyzed, and the current situation of the safety assessment technology of energy storage power stations is introduced. The results indicate that, with the continuous iteration of battery technology and the continuous upgrading of energy storage system structures, the safety assessment of energy storage becomes more and more complex; thus, existing assessment techniques and standards must be further improved. In the future, safety assessment indexes must be adjusted and updated according to the development of energy storage battery intrinsic safety and electrical and fire safety technologies. By combining the progress of simulation and experimental means, safety index thresholds are clarified, as well as the evolution of safety performance accompanying capacity decay and aging after the energy storage system is put into operation. This study aims to build a safety performance level assessment system covering multiple systems, scenarios, and elements; integrate dynamic and static indicators; and develop a safety performance rating assessment technology for energy storage systems that covers "cell-module-unit-system-power plant" layers. Finally, we aim to develop an internationally applicable safety performance assessment standard for energy storage systems and provide Chinese solutions for global energy storage safety.

Key words: lithium-ion batteries, energy storage, safety assessment technology, energy storage safety standards

中图分类号: