储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2282-2301.doi: 10.19799/j.cnki.2095-4239.2023.0252
李晋1,7,10(), 王青松2(), 孔得朋3(), 王晓冬4(), 俞振华5, 乐艳飞6, 黄鑫炎8, 胡振恺9, 吴候福11, 方华斌12, 曹伟13, 张少禹1,7,10, 卓萍1,7,10(), 陈晔1,7,10, 李紫婷1,7,10, 梅文昕2, 张越3, 赵丽香4, 唐亮5, 黄宗侯2, 陈篪6, 刘彦辉8, 储玉喜1,7,10, 许晓元1,7,10, 张晋1,7,10, 李贻恺9, 冯蓉11, 杨标12, 户波13, 杨晓滢1,7,10
收稿日期:
2023-04-25
修回日期:
2023-06-05
出版日期:
2023-07-05
发布日期:
2023-07-25
通讯作者:
李晋
E-mail:lijin@tfri.com.cn;pinew@ustc.edu.cn;kongdepeng@upc.edu.cn;wangxd@cesi.cn;zhuoping@tfri.com.cn
作者简介:
李晋(1966—),男,硕士,研究员,主要从事危险化学品火灾、建筑防火、消防标准化和消防安全评估工作,E-mail:lijin@tfri.com.cn基金资助:
Jin LI1,7,10(), Qingsong WANG2(), Depeng KONG3(), Xiaodong WANG4(), Zhenhua YU5, Yanfei LE6, Xinyan HUANG8, Zhenkai HU9, Houfu WU11, Huabin FANG12, Caowei13, Shaoyu ZHANG1,7,10, Ping ZHUO1,7,10(), Ye CHEN1,7,10, Ziting LI1,7,10, Wenxin MEI2, Yue ZHANG3, Lixiang ZHAO4, Liang TANG5, Zonghou HUANG2, Chi CHEN6, Yanhu LIU8, Yuxi CHU1,7,10, Xiaoyuan XU1,7,10, Jin ZHANG1,7,10, Yikai LI9, Rong FENG11, Biao YANG12, Bo HU13, Xiaoying YANG1,7,10
Received:
2023-04-25
Revised:
2023-06-05
Online:
2023-07-05
Published:
2023-07-25
Contact:
Jin LI
E-mail:lijin@tfri.com.cn;pinew@ustc.edu.cn;kongdepeng@upc.edu.cn;wangxd@cesi.cn;zhuoping@tfri.com.cn
摘要:
本文针对目前锂离子电池储能安全评价研究进展进行了综述,梳理了锂离子电池储能安全评价相关标准现状,从电池本征安全、储能故障及事故统计、热失控机理及火蔓延机制等方面总结了锂离子电池储能安全评价相关理论的研究进展,分析了从锂离子电池单体到储能系统的安全评价数值模拟技术,系统介绍了电池单体到储能系统的安全测试评价技术以及锂离子电池储能电站安全评价技术的现状。研究结果表明,随着电池技术的不断迭代,储能系统结构的不断升级,储能的安全评价将愈发复杂,现有的评价技术和标准有待进一步提升和完善。未来,需要根据储能电池本质安全、电气与消防安全等技术的发展及时调整与更新安全评价指标,结合仿真、实验手段的进步,明确安全指标阈值,并充分考虑储能系统投运后容量衰减、老化过程伴随的安全性能演变,构建覆盖多体系、多场景、多要素,融合动静态指标的安全性能等级评价体系,发展涵盖“单体-模组-簇-系统-电站”层层分级的储能系统安全性能等级评价技术。同时,制定国际适用的储能系统安全性能等级评价标准,为全球储能安全提供中国方案。
中图分类号:
李晋, 王青松, 孔得朋, 王晓冬, 俞振华, 乐艳飞, 黄鑫炎, 胡振恺, 吴候福, 方华斌, 曹伟, 张少禹, 卓萍, 陈晔, 李紫婷, 梅文昕, 张越, 赵丽香, 唐亮, 黄宗侯, 陈篪, 刘彦辉, 储玉喜, 许晓元, 张晋, 李贻恺, 冯蓉, 杨标, 户波, 杨晓滢. 锂离子电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(7): 2282-2301.
Jin LI, Qingsong WANG, Depeng KONG, Xiaodong WANG, Zhenhua YU, Yanfei LE, Xinyan HUANG, Zhenkai HU, Houfu WU, Huabin FANG, Caowei, Shaoyu ZHANG, Ping ZHUO, Ye CHEN, Ziting LI, Wenxin MEI, Yue ZHANG, Lixiang ZHAO, Liang TANG, Zonghou HUANG, Chi CHEN, Yanhu LIU, Yuxi CHU, Xiaoyuan XU, Jin ZHANG, Yikai LI, Rong FENG, Biao YANG, Bo HU, Xiaoying YANG. Research progress on the safety assessment of lithium-ion battery energy storage[J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301.
表1
2021—2022年全球储能事故"
序号 | 项目名称 | 电池类型 | 电站状态 | 事故时间 |
---|---|---|---|---|
1 | 京港澳高速武汉江夏区附近货车运输中的储能系统 | 磷酸铁锂 | 运输中 | 2022-01 |
2 | 韩国蔚山SK工厂储能项目 | 三元 | 投运2年 | 2022-01 |
3 | 韩国庆尚北道军威郡新谷里太阳能发电厂储能项目 | 三元 | 投运3年 | 2022-01 |
4 | 中国江西上饶黄金埠某储能项目 | 磷酸铁锂 | 调试 | 2022-02 |
5 | 美国加州蒙特雷县Moss Landing储能项目 | 三元 | 投运1年 | 2022-02 |
6 | 中国台湾工研院龙井储能项目 | 三元 | 投运2年 | 2022-03 |
7 | 美国亚利桑那Chandler电池储能项目 | 三元 | 投运3年 | 2022-04 |
8 | 美国加州Valley Center储能项目 | 三元 | 投运0.2年 | 2022-04 |
9 | 法国科西嘉岛某光伏电站储能集装箱 | 投运4年 | 2022-06 | |
10 | 美国加州Rio Dell房车公园一铅蓄电池系统事故 | 铅酸电池 | 2022-08 | |
11 | 韩国仁川Hyundai Steel Plant储能项目 | 投运0.5年 | 2022-09 | |
12 | 美国加州特斯拉储能项目 | 三元 | 2022-09 | |
13 | 韩国板桥数据中心 | 三元 | 2022-10 | |
14 | 中国海南莺歌海盐场光储项目 | 磷酸铁锂 | 2022-10 | |
15 | 中国江苏启东市海洪路启东沃厂房内储能电箱 | 2022-10 | ||
16 | 韩国全罗南道潭阳郡光伏电站储能项目 | 三元 | 2022-12 | |
17 | 韩国全罗南道灵岩郡光伏电站储能项目 | 三元 | 2022-12 |
表2
电池安全评价标准"
序号 | 标准名称 | 对象 | 适用范围 |
---|---|---|---|
1 | IEC 62619 Secondary cells and batteries containing alkaline or other non-acid electrolytes-Safety requirements for secondary lithium cells and batteries, for use in industrial applications | 工业用 锂离子电池 | 规定了工业应用(包括固定应用)中使用的锂蓄电池和电池系统的安全运行要求和测试要求 |
2 | IEC 63056 Secondary cells and batteries containing alkaline or other non-acid electrolytes-Safety requirements for secondary lithium cells and batteries for use in electrical energy storage systems | 储能系统用锂离子电池 | 规定了最大直流电压为1500 V(标称值)的电力储能系统中使用的锂蓄电池和电池产品安全和测试要求。在IEC 62619基本安全要求基础上,提出对电力储能系统用锂蓄电池和电池系统的附加或特定要求 |
3 | UN 38.3 Recommendations on the Transport of Dangerous Goods | 含锂电池货物 | 规定了锂电池运输状态条件的一系列测试要求,包括高度模拟、热测试、振动、冲击、55 ℃外短路、撞击试验、过充电试验、强制放电试验等 |
4 | IEC 62281 Safety of primary and secondary lithium cells and batteries during transport | 锂离子电池 | 该标准规定了一次和二次(可充电)锂电池和电池组的试验方法和要求,以确保其在运输过程中的安全性 |
5 | UL 1973 Batteries for Use in Stationary,Vehicle Auxiliary Power and Light Electric Rail (LER) Applications | 储能电池 | 规定了对电池的产品结构要求、电气试验、机械试验、环境试验、铭牌标识、用户手册、出厂测试要求等,并在附录中给出了零部件应符合的标准以及高温钠电池、液流电池测试要求 |
6 | GB/T 36276—2018 电力储能用锂离子电池 | 电力储能用锂离子电池 | 规定了电力储能用锂离子电池的规格、技术要求、试验方法和检验规则等内容 |
表3
储能系统安全评价标准"
序号 | 标准名称 | 对象 | 适用范围 |
---|---|---|---|
1 | IEC 62933-5-2 Electrical energy storage (EES) systems Part 5-2: Safety requirements for grid-integrated EES systems Electrochemical-based systems | 电化学储能系统 | 在IEC TS 62933-5-1的基础上进一步明确电化学储能系统(如电池系统)的安全要求,减少由于电化学储能系统子系统之间相互作用而产生危害或损害的风险 |
2 | IEC 62933-5-4 Electrical energy storage (EES) systems Part 5-4: Safety test methods and procedures for grid integrated EES systems-Lithium ion battery-based systems | 锂离子电池储能系统 | 规定了并网锂离子电池储能系统的安全测试方法和测试程序 |
3 | NFPA 855 Standard for the Installation of Stationary Energy Storage Systems | 固定式储能系统 | 规定了电池储能系统部署要求,列出了各种储能项目设计和安装注意事项,包括不同场所中的间距、消防装置、通风以及相关的防火等要求 |
4 | UL 9540 Energy Storage Systems and Equipment | 电化学、化学、机械和热能储能系统 | 涵盖了电化学储能系统、机械储能系统和储热系统的建设要求,并要求电池满足UL 1973标准,逆变器等满足UL 1741标准 |
5 | UL 9540A Test Method for Evaluating Thermal Runaway Fire Propagation in Battery Energy Storage Systems | 电池储能系统 | 评估电池热失控特性的测试方法,通过测试热失控下产生的各种气体的浓度以及燃烧速率、爆炸压力等来评估火灾、爆炸的危害 |
6 | AS/NZS 5139:2019 Electrical installations-Safety of battery systems for use with power conversion equipment | 电池储能系统 | 规定了与电源转换设备连接的电池系统的安全以及安装要求 |
7 | GB/T 36558—2018 电力系统电化学储能系统通用技术条件 | 电力系统电化学储能系统 | 规定了储能系统的能量转换效率、充放电时间等性能要求以及保护、监控、通信、计量等要求 |
8 | GB/T 40090—2021 储能电站运行维护规程 | 电化学储能电站 | 规定了储能电站的正常运行、异常运 行及故障处理、维护等过程的技术要求 |
9 | GB/T 42288—2022 电化学储能电站安全规程 | 电化学储能电站 | 规定了电化学储能屯站设备设施、运行维护、检修试验、应急处置的安全要求 |
表4
国外标准、学术论文和技术报告中举例的储能电站安全评价方法"
标准/论文/技术报告 | 安全评价方法 | 方法依据/备注 |
---|---|---|
IEC系列规范:IEC 62933-5-1-2017, IEC 62933-5-2-2020, IEC 62619-2022 | 故障类型及其影响分析(FMEA) | IEC 60812 |
失效模式效应与关键性分析法 (FMECA) | — | |
故障树分析(FTA) | IEC 61025 | |
危害与可操作性分析(HAZOP) | IEC 61882 | |
系统理论事故模型和过程(STAMP) | — | |
UL系列规范:UL 1973-2022, UL 9540-2020 | 故障树分析(FTA) | IEC 61025 |
故障类型及其影响分析(FMEA) | IEC 60812 | |
保护层分析(LOPA) | IEC 61508 | |
NFPA855-2023 | 故障树分析(FTA) | IEC 61025 |
故障类型及其影响分析(FMEA) | IEC 60812 | |
DNV (2015)[ | 失效模式效应与关键性分析法 (FMECA) | 评估手册 |
美国Sandia国家实验室(2020)[ | 系统理论过程分析(STPA) | 技术报告 |
Rosewater & Williams(2015)[ | 系统理论过程分析(STPA) | 论文 |
Choo & Go(2022)[ | 混合系统理论过程分析(STPA-H) | 论文 |
Conzen等(2023)[ | 蝴蝶结分析法(Bowtie Analysis) | 论文 |
1 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. |
2 | 中国能源研究会储能专委会. 储能产业研究白皮书2021[R]. 2021. |
China Energy Research Association Energy Storage Special Committee. Energy storage industry research white paper 2021 [R]. 2021. | |
3 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
4 | LIU P J, LI Y Q, MAO B B, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: doi: 10.1016/j.applthermaleng.2021.116949. |
5 | LIU P J, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating[J]. Journal of Energy Storage, 2020, 31: doi: 10.1016/j.est.2020.101714. |
6 | LI H, DUAN Q L, ZHAO C P, et al. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Journal of Hazardous Materials, 2019, 375: 241-254. |
7 | International Electrotechnical Commission. IEC 62619 Secondary cells and batteries containing alkaline or other non-acid electrolytes-Safety requirements for secondary lithium cells and batteries, for use in industrial applications[S]. 2017. |
8 | International Electrotechnical Commission. IEC 63056 Secondary cells and batteries containing alkaline or other non-acid electrolytes-Safety requirements for secondary lithium cells and batteries for use in electrical energy storage systems[S]. 2020. |
9 | NATIONS U. Recommendations[M]//Recommendations on the Transport of Dangerous Goods: Model Regulations. United Nations, 2015: 1-8. |
10 | International Electrotechnical Commission. IEC 62281 Safety of primary and secondary lithium cells and batteries during transport[S]. 2019. |
11 | 国家市场监督管理总局, 国家标准化管理委员会. 固定式电子设备用锂离子电池和电池组 安全技术规范: GB 40165—2021[S]. 北京: 中国标准出版社, 2021. |
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Lithium ion cells and batteries used in stationary electronic equipments-Safety technical specification: GB 40165-2021[S]. Beijing: Standards Press of China, 2021. | |
12 | JOINT CANADA-UNITED STATES NATIONAL STANDARD. UL 1973 STANDARD FOR SAFETY ANSI/CAN/UL-1973: Batteries for Use in Stationary, Vehicle Auxiliary Power and Light Electric Rail (LER) Applications[S]. 2018. |
13 | Electrical energy storage (EES) systems-Part 5-2: Safety requirements for grid-integrated EES systems-Electrochemical-based systems: IEC 62933-5-2 Ed. 1.0 b: 2020[S]. International Electrotechnical Commission [iec], 2020. |
14 | Electrical energy storage (EES) systems-Part 5-1: Safety considerations for grid-integrated EES systems-General specification: IEC/TS 62933-5-1 Ed. 1.0 en: 2017[S]. International Electrotechnical Commission [iec], 2017. |
15 | International Electrotechnical Commission. IEC 62933-5-4 Electrical energy storage(ESS) systems Part 5-4-Safety test methods and procedures for grid integrated EES systems- Lithium ion battery-based systems[S]. 2018. |
16 | JOINT CANADA-UNITED STATES NATIONAL STANDARD. ANSI/ CAN/UL-9540 Energy storage systems and equipment[S]. 2016. |
17 | JOINT CANADA-UNITED STATES NATIONAL STANDARD. UL 9540A test method for evaluating thermal runaway fire propagation in battery energy storage systems[S]. 2018. |
18 | National Fire Protection Association. NFPA 855 standard for the installation of stationary energy storage systems[S]. 2020. |
19 | 中国能源研究会储能专委会, 中关村储能产业技术联盟. 储能产业研究白皮书2018[R]. 北京, 2018: 178-179. |
China Energy Research Association Energy Storage Special Committee, Zhongguancun Energy Storage Industry Technology Alliance. Energy storage industry research white paper 2018 [R]. Beijing, 2018: 178-179. | |
20 | 刘天西. 高分子纳米纤维及其衍生物: 制备、结构与新能源应用[M]. 北京: 科学出版社, 2019. |
LIU T X. Polymer nanofibers and their derivatives[M]. Beijing: Science Press, 2019. | |
21 | 冯旗. 尖晶石型钴酸锌储锂性能的研究[D]. 银川: 宁夏大学. |
FENG Q. Study on lithium storage performance of spinel type zinc cobaltate[D]. Yinchuan: Ningxia University. | |
22 | 李泓, 许晓雄. 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5): 607-614. |
LI H, XU X X. R & D vision and strategies on solid lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 607-614. | |
23 | ZHANG Y, CHENG S Y, MEI W X, et al. Understanding of thermal runaway mechanism of LiFePO4 battery in-depth by three-level analysis[J]. Applied Energy, 2023, 336: doi: 10.1016/j.apenergy. 2023.120695. |
24 | FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275: 261-73. |
25 | SONG L F, HUANG Z H, MEI W X, et al. Thermal runaway propagation behavior and energy flow distribution analysis of 280 Ah LiFePO4 battery[J]. Process Safety and Environmental Protection, 2023, 170: 1066-1078. |
26 | ZHOU Z Z, ZHOU X D, WANG B X, et al. Experimentally exploring thermal runaway propagation and prevention in the prismatic lithium-ion battery with different connections[J]. Process Safety and Environmental Protection, 2022, 164: 517-527. |
27 | HUANG Z H, ZHAO C P, LI H, et al. Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes[J]. Energy, 2020, 205: doi: 10.1016/j.energy.2020.117906. |
28 | LAI X, WANG S Y, WANG H B, et al. Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes[J]. International Journal of Heat and Mass Transfer, 2021, 171: doi: 10.1016/j.ijheatmasstransfer. 2021.121080 |
29 | HUANG Z H, LIU J L, ZHAI H J, et al. Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions[J]. Energy, 2021, 233: doi: 10.1016/j.energy.2021.121103. |
30 | LOPEZ C F, JEEVARAJAN J A, MUKHERJEE P P. Experimental analysis of thermal runaway and propagation in lithium-ion battery modules[J]. Journal of the Electrochemical Society, 2015, 162(9): A1905-A1915. |
31 | 付阳阳. 典型锂离子电池和电解液燃烧特性及航空运输环境对其影响机制研究[D]. 合肥: 中国科学技术大学. |
FU Y Y. Study on combustion characteristics of typical lithium-ion batteries and electrolytes and the influence mechanism of air transportation environment on them[D].Hefei: University of Science and Technology of China. | |
32 | HUANG Z H, LI X, WANG Q S, et al. Experimental investigation on thermal runaway propagation of large format lithium ion battery modules with two cathodes[J]. International Journal of Heat and Mass Transfer, 2021, 172: doi: 10.1016/j.ijheatmasstransfer.2021.121077. |
33 | SAID A O, LEE C, STOLIAROV S I. Experimental investigation of cascading failure in 18650 lithium ion cell arrays: Impact of cathode chemistry[J]. Journal of Power Sources, 2020, 446: doi: 10.1016/j.jpowsour.2019.227347. |
34 | SAID A O, LEE C, STOLIAROV S I, et al. Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays[J]. Applied Energy, 2019, 248: 415-428. |
35 | GAO S, LU L G, OUYANG M, et al. Experimental study on module-to-module thermal runaway-propagation in a battery pack[J]. Journal of the Electrochemical Society, 2019, 166(10): A2065-A2073. |
36 | 江发潮, 章方树, 徐成善, 等. 车用锂离子电池系统热蔓延试验与机理研究[J]. 机械工程学报, 2021, 57(14): 23-31. |
JIANG F C, ZHANG F S, XU C S, et al. Experimental study on the mechanism of thermal runaway propagation in lithium-ion battery pack for electric vehicles[J]. Journal of Mechanical Engineering, 2021, 57(14): 23-31. | |
37 | COMAN P T, DARCY E C, VEJE C T, et al. Modelling Li-ion cell thermal runaway triggered by an internal short circuit device using an efficiency factor and Arrhenius formulations[J]. Journal of the Electrochemical Society, 2017, 164(4): A587-A593. |
38 | KONG D P, WANG G Q, PING P, et al. Numerical investigation of thermal runaway behavior of lithium-ion batteries with different battery materials and heating conditions[J]. Applied Thermal Engineering, 2021, 189: doi: 10.1016/j.applthermaleng.2021.116661. |
39 | ZHANG Y, MEI W X, QIN P, et al. Numerical modeling on thermal runaway triggered by local overheating for lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: doi: 10.1016/j.applthermaleng.2021.116928. |
40 | ZHANG L W, ZHAO P, XU M, et al. Computational identification of the safety regime of Li-ion battery thermal runaway[J]. Applied Energy, 2020, 261: doi: 10.1016/j.apenergy.2019.114440. |
41 | 王洋, 卢旭, 张宇新, 等. 动力电池热失控排气策略[J]. 储能科学与技术, 2022, 11(8): 2480-2487. |
WANG Y, LU X, ZHANG Y X, et al. Thermal runaway exhaust strategy of power battery[J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. | |
42 | QIN P, SUN J H, WANG Q S. A new method to explore thermal and venting behavior of lithium-ion battery thermal runaway[J]. Journal of Power Sources, 2021, 486: doi: 10.1016/j.jpowsour. 2020.229357. |
43 | MAO B B, ZHAO C P, CHEN H D, et al. Experimental and modeling analysis of jet flow and fire dynamics of 18650-type lithium-ion battery[J]. Applied Energy, 2021, 281: doi: 10.1016/j.apenergy.2020.116054. |
44 | COMAN P T, MÁTÉFI-TEMPFLI S, VEJE C T, et al. Modeling vaporization, gas generation and venting in Li-ion battery cells with a dimethyl carbonate electrolyte[J]. Journal of the Electrochemical Society, 2017, 164(9): A1858-A1865. |
45 | QIN P, JIA Z Z, WU J Y, et al. The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes[J]. Applied Energy, 2022, 313: doi: 10.1016/j.apenergy.2022.118767. |
46 | LI W S, LEÓN QUIROGA V, CROMPTON K R, et al. High resolution 3-D simulations of venting in 18650 lithium-ion cells[J]. Frontiers in Energy Research, 2021, 9: doi: 10.3389/fenrg. 2021.788239. |
47 | KIM J, MALLARAPU A, FINEGAN D P, et al. Modeling cell venting and gas-phase reactions in 18650 lithium ion batteries during thermal runaway[J]. Journal of Power Sources, 2021, 489: doi: 10.1016/j.jpowsour.2021.229496. |
48 | KONG D P, WANG G Q, PING P, et al. A coupled conjugate heat transfer and CFD model for the thermal runaway evolution and jet fire of 18650 lithium-ion battery under thermal abuse[J]. eTransportation, 2022, 12: doi: 10.1016/j.etran.2022.100157. |
49 | WANG G Q, KONG D P, PING P, et al. Revealing particle venting of lithium-ion batteries during thermal runaway: A multi-scale model toward multiphase process[J]. eTransportation, 2023, 16: doi: 10.1016/j.etran.2023.100237. |
50 | 王功全, 孔得朋, 平平, 等. 锂离子电池热失控模型综述[J]. 电气工程学报, 2022, 17(4): 61-71. |
WANG G Q, KONG D P, PING P, et al. Thermal runaway modeling of lithium-ion batteries: A review[J]. Journal of Electrical Engineering, 2022, 17(4): 61-71. | |
51 | QI C, ZHU Y L, GAO F, et al. Mathematical model for thermal behavior of lithium ion battery pack under overcharge[J]. International Journal of Heat and Mass Transfer, 2018, 124: 552-563. |
52 | JIN C Y, SUN Y D, WANG H B, et al. Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling[J]. Applied Energy, 2022, 312: doi: 10.1016/j.apenergy.2022.118760. |
53 | FENG X N, LU L G, OUYANG M G, et al. A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115: 194-208. |
54 | KIZILEL R, SABBAH R, SELMAN J R, et al. An alternative cooling system to enhance the safety of Li-ion battery packs[J]. Journal of Power Sources, 2009, 194(2): 1105-1112. |
55 | JIANG Z Y, QU Z G, ZHANG J F, et al. Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy[J]. Applied Energy, 2020, 268: doi: 10.1016/j.apenergy.2020.115007. |
56 | ZHOU H K, DAI C H, LIU Y, et al. Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid[J]. Journal of Power Sources, 2020, 473: doi: 10.1016/j.jpowsour.2020.228545. |
57 | XU J, LAN C J, QIAO Y, et al. Prevent thermal runaway of lithium-ion batteries with minichannel cooling[J]. Applied Thermal Engineering, 2017, 110: 883-890. |
58 | 张越, 孔得朋, 平平. 液冷板抑制锂离子电池组热失控蔓延性能及优化设计[J]. 储能科学与技术, 2022, 11(8): 2432-2441. |
ZHANG Y, KONG D P, PING P. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs[J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. | |
59 | MISHRA D, SHAH K, JAIN A. Investigation of the impact of flow of vented gas on propagation of thermal runaway in a Li-ion battery pack[J]. Journal of the Electrochemical Society, 2021, 168(6): doi: 10.1149/1945-7111/ac0a20. |
60 | WANG G Q, PING P, ZHANG Y, et al. Modeling thermal runaway propagation of lithium-ion batteries under impacts of ceiling jet fire[J]. Process Safety and Environmental Protection, 2023, 175: 524-540. |
61 | WANG G Q, KONG D P, PING P, et al. Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network[J]. Applied Energy, 2023, 334: doi: 10.1016/j.apenergy.2023.120660. |
62 | 徐成善, 鲁博瑞, 张梦启, 等. 储能锂离子电池预制舱热失控烟气流动研究[J]. 储能科学与技术, 2022, 11(8): 2418-2431. |
XU C S, LU B R, ZHANG M Q, et al. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin[J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. | |
63 | CHEN J, REN D S, HSU H, et al. Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model[J]. Applied Energy, 2021, 295: doi: 10.1016/j.apenergy.2021.117038. |
64 | JIN Y, ZHAO Z X, MIAO S, et al. Explosion hazards study of grid-scale lithium-ion battery energy storage station[J]. Journal of Energy Storage, 2021, 42: doi: 10.1016/j.est.2021.102987. |
65 | 尹康涌, 陶风波, 梁伟, 等. 双层结构预制舱式磷酸铁锂储能电站热失控气体爆炸模拟[J]. 储能科学与技术, 2022, 11(8): 2488-2496. |
YIN K Y, TAO F B, LIANG W, et al. Simulation of thermal runaway gas explosion in double-layer prefabricated cabin lithium iron phosphate energy storage power station[J]. Energy Storage Science and Technology, 2022, 11(8): 2488-2496. | |
66 | 牛志远, 金阳, 孙磊, 等. 预制舱式磷酸铁锂电池储能电站燃爆事故模拟及安全防护仿真研究[J]. 高电压技术, 2022, 48(5): 1924-1933. |
NIU Z Y, JIN Y, SUN L, et al. Safety protection simulation research and fire explosion accident simulation of prefabricated compartment lithium iron phosphate energy storage power station[J]. High Voltage Engineering, 2022, 48(5): 1924-1933. | |
67 | 禹进, 郭川钰, 张伟阔, 等. 磷酸铁锂电池在储能预制舱中的火灾模拟及其消防应急技术仿真研究[J/OL].高电压技术:1-9[2023-06-26]. https://doi.org/10.13336/j.1003-6520.hve.20221220. |
YU J, GUO C Y., ZHAGN W G, et al. Fire simulation of lithium iron phosphate battery in energy storage prefabricated chamber and its simulation study of fire emergency technology [J/OL]. High Voltage Technology:1-9 [2023-03-13]. https://doi.org/10.13336/j.1003-6520.hve.20221220. | |
68 | ZHAI H J, CHI M S, LI J Y, et al. Thermal runaway propagation in large format lithium ion battery modules under inclined ceilings[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022.104477. |
69 | 国家市场监督管理总局, 国家标准化管理委员会. GB 31241—2022便携式电子产品用锂离子电池和电池组 安全技术规范 [S]. |
State Administration for Market Regulation, Standardization Administation of China. GB 31241—2022 Lithium ion cells and batteries used in portable electronic equipments—Safety technical specification | |
70 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车用动力蓄电池安全要求及试验方法: GB/T 31485—2015[S]. 北京: 中国标准出版社, 2015. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Safety requirements and test methods for traction battery of electric vehicle: GB/T 31485-2015[S]. Beijing: Standards Press of China, 2015. | |
71 | JOINT CANADA-UNITED STATES NATIONAL STANDARD. UL 1642 UL Standard For Safety Lithium Batteries[S]. 2020. |
72 | 国家市场监督管理总局, 国家标准化管理委员会. 电力储能用锂离子电池: GB/T 36276—2018[S]. 北京: 中国标准出版社, 2018. |
General Administration of Quality Supervision, Standardization Administration of the People's Republic of China. Lithium ion battery for electrical energy storage: GB/T 36276—2018[S]. Beijing: Standards Press of China, 2018. | |
73 | International Electrotechnical Commission. IEC 62477-1 Safety requirements for power electronic converter systems and equipment-Part 1: General [S]. 2022. |
74 | International Electrotechnical Commission. IEC 62040 Uninterruptible power systems (UPS) [S]. 2018. |
75 | International Electrotechnical Commission. IEC 62485-5 Safety requirements for secondary batteries and battery installations-Part 5: Safe operation of stationary lithium ion batteries [S]. 2021 |
76 | 陈银, 肖如, 崔怡琳, 等. 储能电站锂离子电池火灾早期预警与抑制技术研究综述[J]. 电气工程学报, 2022, 17(4): 72-87. |
CHEN Y, XIAO R, CUI Y L, et al. Research review on early warning and suppression technology of lithium-ion battery fire in energy storage power station[J]. Journal of Electrical Engineering, 2022, 17(4): 72-87. | |
77 | 周正, 徐仕先, 丁卫华, 等. 电化学储能安全性分析及预警技术进展[J]. 工业安全与环保, 2023, 49(2): 54-56. |
ZHOU Z, XU S X, DING W H, et al. Progress in safety analysis and early warning technology of electrochemical energy storage[J]. Industrial Safety and Environmental Protection, 2023, 49(2): 54-56. | |
78 | 孙丙香, 苏晓佳, 马仕昌, 等. 基于低频阻抗谱和健康特征融合的锂离子电池健康状态主动探测方法研究[J]. 电力系统保护与控制, 2022, 50(7): 23-30. |
SUN B X, SU X J, MA S C, et al. An active detection method of li-ion battery health state based on low-frequency EIS and health feature fusion[J]. Power System Protection and Control, 2022, 50(7): 23-30. | |
79 | 卓萍, 高飞, 路世昌. 不同灭火装置对磷酸铁锂电池模组火灾的灭火效果[J]. 消防科学与技术, 2022, 41(2): 152-156. |
ZHUO P, GAO F, LU S C. Study on fire extinguishing effect of different fire extinguishing devices on lithium-ion phosphate battery module fire[J]. Fire Science and Technology, 2022, 41(2): 152-156. | |
80 | 赵蓝天, 金阳, 赵智兴, 等. 磷酸铁锂电池模组过充热失控特性及细水雾灭火效果, 电力工程技术, 2021, 040(001): 195-200, 207. |
ZHAO L T, JIN Y, ZHAO Z X, et al. Thermal runaway characteristics of overcharged LiFePO4 battery modules and the effect of fine water mist fire extinguishing, Power Engineering Technology, 2021, 040(001): 195-200, 207. | |
81 | 郭莉, 吴静云, 黄峥, 等. 不同压强细水雾对磷酸铁锂电池模组的灭火效果[J]. 高电压技术, 2021, 47(3): 1002-1011. |
GUO L, WU J Y, HUANG Z, et al. Fire extinguishing effect of water mist with different pressures on LFP battery module[J]. High Voltage Engineering, 2021, 47(3): 1002-1011. | |
82 | MENG X D, LI S, FU W D, et al. Experimental study of intermittent spray cooling on suppression for lithium iron phosphate battery fires[J]. eTransportation, 2022, 11: doi: 10.1016/j.etran.2021.100142. |
83 | 陆剑心, 张英, 马出原, 等. 水凝胶对磷酸铁锂电池灭火实验性能[J]. 储能科学与技术, 2022, 11: 2637-2644. |
LU J X, ZHANG Y, MA Z Y, et al. Experimental performance of hydrogel on lithium iron phosphate batteries for fire suppression[J]. Energy Storage Science and Technology, 2022, 11: 2637-2644. | |
84 | WANG W H, HE S, HE T F, et al. Suppression behavior of water mist containing compound additives on lithium-ion batteries fire[J]. Process Safety and Environmental Protection, 2022, 161: 476-487. |
85 | YUAN S, CHANG C Y, ZHOU Y, et al. The extinguishment mechanisms of a micelle encapsulator F-500 on lithium-ion battery fires[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105186. |
86 | HUANG Z H, LIU P J, DUAN Q L, et al. Experimental investigation on the cooling and suppression effects of liquid nitrogen on the thermal runaway of lithium ion battery[J]. Journal of Power Sources, 2021, 495: doi: 10.1016/j.jpowsour. 2021.229795. |
87 | WANG Z R, WANG K, WANG J L, et al. Inhibition effect of liquid nitrogen on thermal runaway propagation of lithium ion batteries in confined space[J]. Journal of Loss Prevention in the Process Industries, 2022, 79: doi: 10.1016/j.jlp.2022.104853. |
88 | HUANG Z H, ZHANG Y, SONG L F, et al. Preventing effect of liquid nitrogen on the thermal runaway propagation in 18650 lithium ion battery modules[J]. Process Safety and Environmental Protection, 2022, 168: 42-53. |
89 | 中国电力企业联合会. 预制舱式磷酸铁锂电池储能电站消防技术规范: T/CEC 373—2020[S]. 北京: 中国电力出版社, 2020. |
90 | National Fire Protection Association. NFPA 68: Standard on explosion protection by deflagration venting, 2007 Edition: NFPA 68-2007[S]. 2007. |
91 | VERHAEGH N, BURGT J V D, TIGGELMAN A, et al. STALLION Handbook on safety assessments for large-scale, stationary, grid-connected Li ion energy storage systems[R/OL]. [2015-03-31]. https://batterystandards.info/sites/batterystandards/files/d8_4_stallion_handbook_on_li-ion_safety_assessment_final.pdf. |
92 | ROSEWATER D M. Grid-scale energy storage hazard analysis and design objectives for system safety[R]. United States: the Energy Storage Systems Safety and Reliability Forum, 2021. |
93 | ROSEWATER D, WILLIAMS A. Analyzing system safety in lithium-ion grid energy storage[J]. Journal of Power Sources, 2015, 300: 460-471. |
94 | CHOO B L, GO Y I. Energy storage for large scale/utility renewable energy system-An enhanced safety model and risk assessment[J]. Renewable Energy Focus, 2022, 42: 79-96. |
95 | CONZEN J, LAKSHMIPATHY S, KAPAHI A, et al. Lithium ion battery energy storage systems (BESS) hazards[J]. Journal of Loss Prevention in the Process Industries, 2023, 81: doi: 10.1016/j.jlp.2022.104932. |
[1] | 郝增辉, 刘训良, 孟缘, 孟楠, 温治. 电极界面微观结构对固态锂离子电池性能的影响[J]. 储能科学与技术, 2023, 12(7): 2095-2104. |
[2] | 张青松, 包防卫, 牛江昊. 环境压力对锂电池热失控产气及爆炸风险的影响[J]. 储能科学与技术, 2023, 12(7): 2263-2270. |
[3] | 陈智伟, 张维戈, 张珺玮, 张言茹. 基于视觉特征的动力电池组综合健康评估及分筛方法[J]. 储能科学与技术, 2023, 12(7): 2211-2219. |
[4] | 张宇波, 王有元, 黄洞宁, 王子懿, 陈伟根. 面向变工况条件的锂离子电池寿命退化预测方法[J]. 储能科学与技术, 2023, 12(7): 2238-2245. |
[5] | 徐冲, 徐宁, 蒋志敏, 李中凯, 胡洋, 严红, 马国强. 锂离子电池产气机制及基于电解液的抑制策略[J]. 储能科学与技术, 2023, 12(7): 2119-2133. |
[6] | 陈钦佩, 王学辉, 米文忠. 电动汽车锂离子电池系统热失控气体毒害及爆炸特性研究[J]. 储能科学与技术, 2023, 12(7): 2256-2262. |
[7] | 昝文达, 张睿, 丁飞. 锂离子电池电化学模型发展与应用[J]. 储能科学与技术, 2023, 12(7): 2302-2318. |
[8] | 吴宜琨, 何杰, 杨乐, 宋维力, 陈浩森. 锂离子电池多物理场多尺度变形理论模型与计算方法[J]. 储能科学与技术, 2023, 12(7): 2141-2154. |
[9] | 管鸿盛, 钱诚, 徐炳辉, 孙博, 任羿. 融合自注意力机制与门控循环单元网络的宽工况锂离子电池SOC估计[J]. 储能科学与技术, 2023, 12(7): 2229-2237. |
[10] | 范茂松, 耿萌萌, 赵光金, 杨凯, 王放放, 刘皓. 基于多频点阻抗的梯次利用电池分选技术研究[J]. 储能科学与技术, 2023, 12(7): 2202-2210. |
[11] | 张佳怡, 翁素婷, 王兆翔, 王雪锋. 石墨负极界面SEI膜与锂离子电池热失控[J]. 储能科学与技术, 2023, 12(7): 2105-2118. |
[12] | 王怡, 陈学兵, 王愿习, 郑杰允, 刘啸嵩, 李泓. 储能锂离子电池多层级失效机理及分析技术综述[J]. 储能科学与技术, 2023, 12(7): 2079-2094. |
[13] | 陈育新, 杨家沐, 练成, 刘洪来. 基于相场模型的锂电池电极浆料稳定涂布窗口分析[J]. 储能科学与技术, 2023, 12(7): 2185-2193. |
[14] | 马丽娅, 郭宝辉. 储能模组失效分析及结构优化研究[J]. 储能科学与技术, 2023, 12(7): 2194-2201. |
[15] | 杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J]. 储能科学与技术, 2023, 12(7): 2166-2184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||