储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2302-2318.doi: 10.19799/j.cnki.2095-4239.2023.0296

• 储能锂离子电池系统关键技术专刊 • 上一篇    下一篇

锂离子电池电化学模型发展与应用

昝文达(), 张睿, 丁飞()   

  1. 河北工业大学电气工程学院,天津 300131
  • 收稿日期:2023-05-04 修回日期:2023-05-17 出版日期:2023-07-05 发布日期:2023-07-25
  • 通讯作者: 丁飞 E-mail:1280196469@qq.com;hilldingfei@163.com
  • 作者简介:昝文达(1999—),男,硕士研究生,主要研究方向为锂离子电池三维重构及仿真,E-mail:1280196469@qq.com
  • 基金资助:
    河北省全职引进高端人才科研项目(2020HBQZYC017);河北省自然基金青年项目(E2022202181)

Development and application of electrochemical models for lithium-ion batteries

Wenda ZAN(), Rui ZHANG, Fei DING()   

  1. School of Electrical Engineering, Hebei University of Technology, Tianjin 300131, China
  • Received:2023-05-04 Revised:2023-05-17 Online:2023-07-05 Published:2023-07-25
  • Contact: Fei DING E-mail:1280196469@qq.com;hilldingfei@163.com

摘要:

锂离子电池是一个复杂的多尺度、多物理场系统。利用电化学仿真的方法可以模拟电池内部发生的化学、物理过程,预测电池行为,为优化电池系统设计提供理论支撑,从而减少电池开发的时间和成本。本文通过对相关文献的探讨,总结了电化学模型及其衍生模型,包括单颗粒模型、准二维模型、三维模型以及介观尺度模型,并介绍了几种重要的电化学模型参数的获取方法。对于电化学模型的不同使用场景,本文总结了电化学模型在锂离子电池内部温度与应力分析、寿命仿真和微观结构设计中的应用。介绍了利用模型研究电池内部锂离子浓度、电势和电化学反应速率的分布;归纳了利用耦合多物理场电化学模型模拟电池内部温度和应力分布,并预测电池运行期间的退化;总结了通过介观尺度电化学模型研究微观结构、参数对电池性能的影响,并为电极结构设计提供指导。综合分析表明,电化学模型在电池内部机理分析上有着很大的优势。最后,本文展望了锂离子电池电化学模型的发展方向。

关键词: 锂离子电池, 电化学模型, 温度应力分布, 电池老化, 电极结构

Abstract:

Lithium-ion batteries are complex systems containing multiscale and multiphysical fields. Electrochemical simulations can describe the chemical and physical processes in batteries, providing theoretical support for the optimization of battery systems and their design to reduce the time and costs related to battery development. This article summarizes electrochemical models and their derived models, including single-particle, pseudo-two-dimensional, three-dimensional, and mesoscale models. This study also introduces several parameter acquisition methods. Additionally, the applications of electrochemical models in internal temperature and stress analysis, aging simulation, and microstructure design of lithium-ion batteries are summarized. Based on electrochemical models, the distributions of lithium ions, potential, and reaction rate in battery electrolyte and electrodes are studied. Furthermore, an electrochemical model coupled with multiphysical fields is introduced to simulate the temperature and stress distributions in cells and predict the degradation of cells during cycling. The effects of microstructure and various parameters on battery performance are investigated using the microcosmic electrochemical model to guide electrode structure design. In summary, electrochemical models have great advantages for analyzing the internal mechanisms of batteries. Finally, directions for future research on electrochemical models for lithium-ion batteries are suggested.

Key words: lithium-ion battery, electrochemical model, temperature and stress distribution, battery aging, electrode structure

中图分类号: