1 |
YANG C F, WANG X Y, FANG Q H, et al. An online SOC and capacity estimation method for aged lithium-ion battery pack considering cell inconsistency[J]. Journal of Energy Storage, 2020, 29: doi: 10.1016/j.est.2020.101250.
|
2 |
HOSSAIN LIPU M S, HANNAN M A, KARIM T F, et al. Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook[J]. Journal of Cleaner Production, 2021, 292: doi: 10.1016/j.jclepro. 2021.126044.
|
3 |
NI Z C, YANG Y. A combined data-model method for state-of-charge estimation of lithium-ion batteries[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-11.
|
4 |
WU L F, ZHANG Y. Attention-based encoder-decoder networks for state of charge estimation of lithium-ion battery[J]. Energy, 2023, 268: doi: 10.1016/j.energy.2023.126665.
|
5 |
BIAN C, YANG S K, LIU J, et al. Robust state-of-charge estimation of Li-ion batteries based on multichannel convolutional and bidirectional recurrent neural networks[J]. Applied Soft Computing, 2022, 116:doi: 10.1016/j.asoc.2021.108401.
|
6 |
GUO S S, MA L. A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation[J]. Energy, 2023, 263: doi: 10.1016/j.energy.2022.125872.
|
7 |
ZHANG G Y, XIA B Z, WANG J M. Intelligent state of charge estimation of lithium-ion batteries based on L-M optimized back-propagation neural network[J]. Journal of Energy Storage, 2021, 44: doi: 10.1016/j.est.2021.103442.
|
8 |
HOW D N T, HANNAN M A, HOSSAIN LIPU M S, et al. State-of-charge estimation of Li-ion battery in electric vehicles: A deep neural network approach[C]//2019 IEEE Industry Applications Society Annual Meeting. September 29—October 3, 2019, Baltimore, MD, USA. IEEE, 2019: 1-8.
|
9 |
HANNAN M A, HOW D N T, HOSSAIN LIPU M S, et al. SOC estimation of Li-ion batteries with learning rate-optimized deep fully convolutional network[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7349-7353.
|
10 |
LIU Y F, LI J Q, ZHANG G, et al. State of charge estimation of lithium-ion batteries based on temporal convolutional network and transfer learning[J]. IEEE Access, 2021, 9: 34177-34187.
|
11 |
CHEN J X, ZHANG Y, WU J, et al. SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output[J]. Energy, 2023, 262: doi: 10.1016/j.energy.2022.125375.
|
12 |
TIAN J P, XIONG R, SHEN W X, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach[J]. Applied Energy, 2021, 291:doi: 10.1016/j.apenergy. 2021.116812.
|
13 |
YANG F F, LI W H, LI C, et al. State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network[J]. Energy, 2019, 175: 66-75.
|
14 |
HANNAN M A, HOW D N T, BIN MANSOR M, et al. State-of-charge estimation of Li-ion battery using gated recurrent unit with one-cycle learning rate policy[J]. IEEE Transactions on Industry Applications, 2021, 57(3): 2964-2971.
|
15 |
朱元富, 贺文武, 李建兴, 等. 基于Bi-LSTM/Bi-GRU循环神经网络的锂电池SOC估计[J]. 储能科学与技术, 2021, 10(3): 1163-1176.
|
|
ZHU Y F, HE W W, LI J X, et al. SOC estimation for Li-ion batteries based on Bi-LSTM and Bi-GRU[J]. Energy Storage Science and Technology, 2021, 10(3): 1163-1176.
|
16 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. La Jolla: Neural Information Processing Systems (nips), 2017: doi: 10.48550/arXiv.1706.03762.
|
17 |
HU C S, CHENG F J, MA L A, et al. State of charge estimation for lithium-ion batteries based on TCN-LSTM neural networks[J]. Journal of the Electrochemical Society, 2022, 169(3): 030544.
|
18 |
CHEN Z, ZHAO H Q, SHU X, et al. Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter[J]. Energy, 2021, 228: doi: 10.1016/j.energy.2021.120630.
|