储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2238-2245.doi: 10.19799/j.cnki.2095-4239.2023.0233

• 储能锂离子电池系统关键技术专刊 • 上一篇    下一篇

面向变工况条件的锂离子电池寿命退化预测方法

张宇波(), 王有元(), 黄洞宁, 王子懿, 陈伟根   

  1. 重庆大学输配电装备及系统安全与新技术国家重点实验室,重庆 400044
  • 收稿日期:2023-04-18 修回日期:2023-04-26 出版日期:2023-07-05 发布日期:2023-07-25
  • 通讯作者: 王有元 E-mail:y.zhang@cqu.edu.cn;y.wang@cqu.edu.cn
  • 作者简介:张宇波(1997—),男,博士研究生,研究方向为锂离子电池全生命周期管控技术,E-mail:y.zhang@cqu.edu.cn

Prognostic method of lithium-ion battery lifetime degradation under various working conditions

Yubo ZHANG(), Youyuan WANG(), Dongning HUANG, Ziyi WANG, Weigen CHEN   

  1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
  • Received:2023-04-18 Revised:2023-04-26 Online:2023-07-05 Published:2023-07-25
  • Contact: Youyuan WANG E-mail:y.zhang@cqu.edu.cn;y.wang@cqu.edu.cn

摘要:

准确地预测锂离子电池寿命退化对保障电动汽车及电化学储能系统的安全可靠运行具有重要意义。然而,面向变工况条件的锂离子电池寿命预测仍具有较大的挑战。本文提出了一种新型特征矩阵的建立方法以及基于深度卷积神经网络的电池寿命预测方法。首先,以容量衰减来定义电池寿命退化,根据变工况公开数据集的特点,结合历史容量信息、循环次数信息和工况信息建立了多维度特征参量矩阵。然后,以特征参量矩阵为输入,待预测电池容量为输出,构建了一步预测的映射关系。为获取该映射关系,采用了具有强非线性能力的深度学习方法,通过空洞卷积模块、残差模块和回归模块的叠加建立了空洞残差回归网络(dilated residual regression network,DRRN)。进一步地,在训练所构建的网络时使用贝叶斯优化(Bayesian optimization,BO)寻找最佳的超参数组合,使模型达到最优效果。实验结果表明,相比于目前常用于电池剩余寿命预测的粒子滤波算法和长短时记忆神经网络算法,所提方法至少可减少相对均方根误差42.8%,具有明显优势。在不同的预测起点下,证明了所提方法具有较鲁棒的预测能力。

关键词: 锂离子电池, 变工况条件, 寿命预测, 卷积神经网络, 贝叶斯优化

Abstract:

Accurately predicting the degradation of lithium-ion battery life is crucial to ensure the safe and reliable operation of electric vehicles and electrochemical energy storage systems. However, predicting the life of lithium-ion batteries under various operating conditions remains a major challenge. This article presents a novel approach to construct feature matrices and predict battery life using deep convolutional neural networks. First, battery life degradation is defined in terms of capacity decay. A multidimensional feature parametric matrix is then built based on the dataset's characteristics, including variable operating conditions. This matrix combines historical capacity information, cycle count information, and operating conditions information. Next, a one-step ahead mapping relationship is established using the feature parameter matrix as input and the battery capacity to be predicted as output. To achieve this mapping relationship, a deep learning method with strong nonlinear capability is employed. It builds a dilated residual regression network by combining a dilated convolution module, a residual module, and a regression module. Furthermore, Bayesian Optimization is used to train the proposed network and find the best combination of hyperparameters, ensuring the model's optimality. Experimental results demonstrate that the proposed method significantly enhances prediction accuracy compared to commonly used model- and data-driven methods for the battery life prediction. Moreover, the proposed method exhibits robust prediction capability across different prediction starting points.

Key words: lithium-ion battery, varied working conditions, lifetime prediction, convolutional neural network, bayesian optimalization

中图分类号: