储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2319-2332.doi: 10.19799/j.cnki.2095-4239.2023.0288
收稿日期:
2023-04-27
修回日期:
2023-06-03
出版日期:
2023-07-05
发布日期:
2023-07-25
通讯作者:
李博文
E-mail:gjzhao@iccas.ac.cn;bowenli@hust.edu.cn
作者简介:
赵光金(1981—),男,博士,教授级高级工程师,主要研究方向为物理化学,E-mail:gjzhao@iccas.ac.cn;
基金资助:
Guangjin ZHAO(), Bowen LI(), Yuxia HU, Ruifeng DONG, Fangfang WANG
Received:
2023-04-27
Revised:
2023-06-03
Online:
2023-07-05
Published:
2023-07-25
Contact:
Bowen LI
E-mail:gjzhao@iccas.ac.cn;bowenli@hust.edu.cn
摘要:
近些年,随着新能源产业蓬勃发展,动力电池也将迎来大规模退役潮。动力电池的梯次利用不仅可以充分发挥电池价值降低电池成本,同时也能削弱退役动力电池对土壤和环境造成的威胁,缓解传统储能系统成本高、收益低等问题。目前,传统分容定容一致性的筛选技术效率低、成本高,难以适应多场景的梯次利用动力电池一致性的筛选需求,数据分析在筛选过程中没有发挥必要的作用,快速高效的电池筛选技术成为退役电池规模化应用的关键技术之一。此外,现有梯次利用技术无法解决一致性差等问题,重组电池梯次运行衰减较快,且老化规律难以预判,存在较大的安全隐患,退役动力电池梯次利用在一致性管理、动态安全监测及调控等技术在规模化应用中仍需实现突破。虽然梯次利用电池储能系统示范应用已初具成效,但仍面临系统高安全性和经济性等技术难题。本文通过对近期相关文献的探讨,综述了退役动力电池的分选、评估、筛选、检测、重组、均衡以及安全等关键技术的研究现状,并对退役动力电池梯次利用相关的产业政策以及国家行业标准进行梳理,有望为退役动力电池大规模梯次利用提供参考。
中图分类号:
赵光金, 李博文, 胡玉霞, 董锐锋, 王放放. 退役动力电池梯次利用技术及工程应用概述[J]. 储能科学与技术, 2023, 12(7): 2319-2332.
Guangjin ZHAO, Bowen LI, Yuxia HU, Ruifeng DONG, Fangfang WANG. Overview of the echelon utilization technology and engineering application of retired power batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2319-2332.
表 2
国内退役动力电池梯次利用相关政策"
时间 | 部门 | 政策 | 主要内容和影响 |
---|---|---|---|
2022-12 | 工信部 | 《新能源汽车废旧动力蓄电池综合利用行业规范条件》企业名单(第四批) | 公示第四批动力电池综合利用企业名单,共包含17省市41家企业 |
2022-09 | 市场监管总局 | 《关于开展新能源汽车动力电池梯次利用产品认证工作的公告(征求意见稿)》 | 加强新能源汽车动力蓄电池梯次利用管理,提升资源综合利用水平, 保障梯次利用电池产品的质量 |
2022-08 | 工信部等七部门 | 《信息通信行业绿色低碳发展行动计划(2022—2025年)》 | 鼓励企业在通信基站备电等领域有序推进动力电池梯次利用, 提升全过程安全管理能力 |
2021-11 | 工信部 | 《“十四五”工业绿色发展规划》 | 推动废旧动力电池在储能、备电、充换电等领域的规模化梯次应用,建设一批梯次利用和再生利用项目,到2025年,建成较为完善的动力电池回收利用体系 |
2021-11 | 工信部 | 《新能源汽车废旧动力电池蓄电池综合利用行业规范条件》企业名单(第三批) | 健全锂离子电池生产、销售、使用、回收、综合利用等全生命周期 资源综合管理 |
2021-08 | 工信部等五部门 | 《新能源汽车动力蓄电池梯次 利用管理办法》 | 加强信息共享,利用已有回收渠道,高效回收废旧动力蓄电池用于梯次利用 |
2020-11 | 工信部 | 《新能源汽车废旧动力蓄电池综合利用行业规范条件(2019年》 | 加强新能源废旧动力蓄电池综合行业规范管理和相关定义,明确新能源 资源回收效率的具体数值 |
2019-11 | 工信部 | 《新能源汽车动力蓄电池回收 服务网点建设和运营指南》 | 要求新能源汽车生产及梯次利用等企业建立废旧动力蓄电池回收服务网点,同时指出考虑作业过程中的安全问题 |
2018-09 | 工信部 | 《新能源汽车废旧动力蓄电池综合利用行业规范条件》企业名单(第一批) | 公示第一批动力电池综合利用企业名单5家企业 |
2018-07 | 工信部 | 《新能源汽车动力蓄电池回收 利用溯源管理暂行规定》 | 建立溯源管理平台,针对电池产业链的各个环节进行实时监控 |
2018-03 | 工信部等七部委 | 《新能源汽车动力蓄电池回收 利用试点实施方案》 | 推进经济性强、环境友好型的废旧动力蓄电池回收模式, 推进回收利用体系建设 |
2018-01 | 工信部等七部委 | 《新能源汽车动力蓄电池回收 利用管理暂行办法》 | 明确相关企业在动力蓄电池回收利用各环节履行相应责任, 保障动力蓄电池的有效利用和环保处置 |
表3
国内退役动力电池梯次利用国家标准和行业标准[56-70]"
标准编号 | 标准名称 | 实施日期 |
---|---|---|
GB/T 33598.3—2021 | 车用动力电池回收利用 再生利用 第3部分:放电规范[ | 2022-05-01 |
GB/T 34015.4—2021 | 车用动力电池回收利用 梯次利用第4部分—梯次利用产品标识[ | 2022-03-10 |
GB/T 34015.3—2021 | 车用动力电池回收利用 梯次利用第3部分—梯次利用要求[ | 2022-03-01 |
GB/T 39780—2021 | 资源综合利用企业评价规范[ | 2021-10-01 |
GB/T 39224—2020 | 废旧电池回收技术规范[ | 2021-06-08 |
GB/T 38698.1—2020 | 车用动力电池回收利用 管理规范 第1部分:包装运输[ | 2020-10-10 |
GB/T 34015.2—2020 | 车用动力电池回收利用 梯次利用 第2部分:拆卸要求[ | 2020-10-10 |
GB/T 37281—2019 | 废铅酸蓄电池回收技术规范[ | 2019-11-08 |
GB/T 34015—2017 | 车用动力电池回收利用—余能检测[ | 2018-02-01 |
GB/T 34014 2017 | 汽车动力蓄电池编码规则[ | 2018-02-01 |
GB/T 34013 2017 | 电动车用动力 蓄电池产品规格尺寸[ | 2018-02-01 |
GB/T 33598—2017 | 车用动力电池回收利用—拆解规范[ | 2017-12-01 |
DL/T 2316—2021 | 电力储能用锂离子梯次利用动力电池再退役技术条件[ | 2021-10-26 |
DL/T 2315—2021 | 电力储能用梯次利用锂离子电池系统技术导则[ | 2021-10-26 |
YD/T 3768.1—2020 | 通信基站梯次利用车用动力电池的技术要求与试验方法 第1部分:磷酸铁锂电池[ | 2020-10-01 |
表4
全球动力电池梯次利用部分应用状况统计"
时间/年 | 项目 | 内容 |
---|---|---|
2022 | 丰田公司对其电动汽车电池开展回收用于储能系统应用 | 使用从电动汽车梯次利用电池建造的485 kW/1260 kWh储能系统在日本的电网上运行 |
2022 | 大众公司实施ID.3/ID.4电动汽车电池再利用于储能电站的实证研究 | 由96个MEB单元模块,容量为570 kWh的储能电站,试验电动汽车的旧电池的利用价值 |
2022 | 宝马集团与浙江华友循环科技有限公司打造动力电池材料闭环回收与梯次利用的创新合作模式 | 携手产业链上下游布局动力电池回收、梯次利用,实现动力电池原材料的闭环管路 |
2021 | JT Energy Systems公司开发可再生能源电池储能系统 | 组件的25 MW电池储能系统中1万个电池模块主要来自AG公司的电动叉车和电动客车 |
2019 | 美国香树林国家实验室开发梯次利用电池控制系统 | 构建的装机容量为100 kW储能系统,以测试其控制系统和硬件解决方案 |
2015 | 博士集团、宝马和瓦腾福公司合作的动力电池再利用2 MW/2 MWh大型光伏储能电站 | 利用宝马Active E和i3纯电动汽车退役的电池验证了梯次利用技术在新能源场景建造的应用技术 |
2013 | 东芝公司在东京都港区开展电动巴士退役电池梯次利用实证研究 | 研究退役电池再利用低功率输出技术,解决报废电池问题 |
2010 | 日产汽车和住友商会共同成立4R Energy公司 | 从事电动车废弃电池的再利用及综合开发 |
1 | 李建林, 李雅欣, 吕超, 等. 退役动力电池梯次利用关键技术及现状分析[J]. 电力系统自动化, 2020, 44(13): 172-183. |
LI J L, LI Y X, LYU C, et al. Key technology and research status of cascaded utilization in decommissioned power battery[J]. Automation of Electric Power Systems, 2020, 44(13): 172-183. | |
2 | 王存, 袁智勇, 王亦伟, 等. 退役动力电池梯次利用关键技术概述[J]. 新能源进展, 2021, 9(4): 327-341. |
WANG C, YUAN Z Y, WANG Y W, et al. Overview of key technologies for echelon utilization of decommissioned power batteries[J]. Advances in New and Renewable Energy, 2021, 9(4): 327-341. | |
3 | 朱丽群, 张建秋. 一种联合锂电池健康和荷电状态的新模型[J]. 中国电机工程学报, 2018, 38(12): 3613-3620, 21. |
ZHU L Q, ZHANG J Q. A new model of jointed states of charge and health for lithium batteries[J]. Proceedings of the CSEE, 2018, 38(12): 3613-3620, 21. | |
4 | 朱小平, 张涛. 基于自适应理论的锂离子电池SOC估计[J]. 电气技术, 2013(7): 47-50. |
ZHU X P, ZHANG T. New method of SOC estimation for lithium-ion batteries based on self-adaptive system[J]. Electrical Engineering, 2013(7): 47-50. | |
5 | PATTIPATI B, SANKAVARAM C, PATTIPATI K. System identification and estimation framework for pivotal automotive battery management system characteristics[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2011, 41(6): 869-884. |
6 | HAN S S, CHEN W Z. The algorithm of dynamic battery SOC based on mamdani fuzzy reasoning[C]//2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery. October 18-20, 2008, Jinan, China. IEEE, 2008: 439-443. |
7 | 刘姗姗. 动力锂电池组管理系统的研究与设计[D]. 长沙: 中南大学, 2012. |
LIU S S. Research and design of power lithium battery management system[D].Changsha: Central South University, 2012. | |
8 | 李晓辉, 张向文, 周永健, 等. 模糊神经网络的动力电池故障诊断系统[J]. 电源技术, 2019, 43(8): 1391-1394. |
LI X H, ZHANG X W, ZHOU Y J, et al. Power battery fault diagnosis system based on fuzzy neural network[J]. Chinese Journal of Power Sources, 2019, 43(8): 1391-1394. | |
9 | SHENG H M, XIAO J. Electric vehicle state of charge estimation: Nonlinear correlation and fuzzy support vector machine[J]. Journal of Power Sources, 2015, 281: 131-137. |
10 | TRAN N T, KHAN A, CHOI W. State of charge and state of health estimation of AGM VRLA batteries by employing a dual extended Kalman filter and an ARX model for online parameter estimation[J]. Energies, 2017, 10(1): 137. |
11 | PROPP K, AUGER D J, FOTOUHI A, et al. Improved state of charge estimation for lithium-sulfur batteries[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.100943. |
12 | XIONG R, HE H W, SUN F C, et al. Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach[J]. IEEE Transactions on Vehicular Technology, 2013, 62(1): 108-117. |
13 | HE H W, XIONG R, FAN J X. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies, 2011, 4(4): 582-598. |
14 | MA Y, CHEN Y, ZHOU X W, et al. Remaining useful life prediction of lithium-ion battery based on gauss-Hermite particle filter[J]. IEEE Transactions on Control Systems Technology, 2019, 27(4): 1788-1795. |
15 | SHAHRIARI M, FARROKHI M. Online state-of-health estimation of VRLA batteries using state of charge[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 191-202. |
16 | 吕承阳. 梯次利用电池状态评估方法研究[D]. 徐州: 中国矿业大学, 2020. |
LYU C Y. Study on evaluation method of battery condition for cascade utilization[D].Xuzhou: China University of Mining and Technology, 2020. | |
17 | DONG G Z, WEI J W, ZHANG C B, et al. Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method[J]. Applied Energy, 2016, 162: 163-171. |
18 | 柳雨舒. 基于电化学阻抗谱的锂离子电池建模和状态估计方法研究[D]. 天津: 天津大学, 2020. |
LIU Y S. Research on modeling and state estimation method of lithium ion battery based on electrochemical impedance spectroscopy[D].Tianjin: Tianjin University, 2020 . | |
19 | ZHU M, HU W S, KAR N C. The SOH estimation of LiFePO4 battery based on internal resistance with Grey Markov Chain[C]//2016 IEEE Transportation Electrification Conference and Expo (ITEC). June 27-29, 2016, Dearborn, MI. IEEE, 2016: 1-6. |
20 | 马速良, 李建林, 李雅欣, 等. 面向电池梯次利用筛选需求的定制化聚类优化方法[J]. 中国电机工程学报, 2022, 42(17): 6208-6220. |
MA S L, LI J L, LI Y X, et al. Customized clustering optimization method for battery reutilization screening requirements[J]. Proceedings of the CSEE, 2022, 42(17): 6208-6220. | |
21 | 曹学彬. 退役电池快速分选与综合评价方法研究[D]. 济南: 山东大学, 2022. |
CAO X B. Study on the method of quick sorting and comprehensive evaluation of retired batteries[D].Jinan: Shandong University,2022. | |
22 | 骆凡, 黄海宏, 王海欣. 基于短时脉冲放电与电化学阻抗谱的退役动力电池快速分选与重组方法[J]. 仪器仪表学报, 2022, 43(1): 229-238. |
LUO F, HUANG H H, WANG H X. A fast screening and recombinant method based on short-time pulse discharge and electrochemical impedance spectroscopy for decommissioned power batteries[J]. Chinese Journal of Scientific Instrument, 2022, 43(1): 229-238. | |
23 | 米吉福, 范茂松, 汪浩, 等. 退役磷酸铁锂动力电池性能分析研究[J]. 电源技术, 2019, 43(2): 217-220. |
MI J F, FAN M S, WANG H, et al. Performance study of retired power lithium iron phosphate batteries[J]. Chinese Journal of Power Sources, 2019, 43(2): 217-220. | |
24 | 赵光金, 何睦, 唐国鹏, 等. 退役动力锂电池可用性评价方法研究[J]. 电源技术, 2018, 42(11): 1632-1634, 1671. |
ZHAO G J, HE M, TANG G P, et al. Research on re-usage evaluation method of retired lithium-ion power batteries[J]. Chinese Journal of Power Sources, 2018, 42(11): 1632-1634, 1671. | |
25 | CHEN H P, ZHANG T S, GAO Q, et al. Assessment and management of health status in full life cycle of echelon utilization for retired power lithium batteries[J]. Journal of Cleaner Production, 2022, 379: doi: 10.1016/j.jclepro.2022.134583. |
26 | 崔树辉, 周贺, 黄振兴, 等. 动力电池梯次利用关键技术与应用综述[J]. 广东电力, 2023, 36(1): 9-19. |
CUI S H, ZHOU H, HUANG Z X, et al. Summary of key technologies and applications of power battery cascade utilization[J]. Guangdong Electric Power, 2023, 36(1): 9-19. | |
27 | CHEN Z H, DENG Y L, LI H L, et al. An efficient regrouping method of retired lithium-ion iron phosphate batteries based on incremental capacity curve feature extraction for echelon utilization[J]. Journal of Energy Storage, 2022, 56: doi: 10.1016/j.est.2022.1059177. |
28 | 徐余丰, 严加斌, 何建明, 等. 退役动力锂电池在光储微电网的集成与应用[J]. 储能科学与技术, 2021, 10(1): 349-354. |
XU Y F, YAN J B, HE J M, et al. Integration and application of retried LIBs in photovoltaic and energy storage micro grid[J]. Energy Storage Science and Technology, 2021, 10(1): 349-354. | |
29 | 唐国鹏, 赵光金, 吴文龙. 动力电池均衡控制技术研究进展[J]. 电源技术, 2015, 39(10): 2312-2315. |
TANG G P, ZHAO G J, WU W L. Research progress of power battery equalization[J]. Chinese Journal of Power Sources, 2015, 39(10): 2312-2315. | |
30 | 刘征宇, 魏自红, 许亚娟, 等. 基于自适应拓扑的电池动态分组均衡方法[J]. 中国机械工程, 2020, 31(6): 714-721. |
LIU Z Y, WEI Z H, XU Y J, et al. A battery dynamic grouping equalization method based on adaptive topology[J]. China Mechanical Engineering, 2020, 31(6): 714-721. | |
31 | WANG N B, GARG A, SU S S, et al. Echelon utilization of retired power lithium-ion batteries: Challenges and prospects[J]. Batteries, 2022, 8(8): 96. |
32 | 马运东, 阮新波, 周林泉, 等. 全桥三电平直流变换器的最佳开关方式[J]. 中国电机工程学报, 2003, 23(12): 111-116. |
MA Y D, RUAN X B, ZHOU L Q, et al. The best modulation strategy of the full-bridge three-level converter[J]. Proceedings of the CSEE, 2003, 23(12): 111-116. | |
33 | 张兴. PWM整流器及其控制策略的研究[D]. 合肥: 合肥工业大学, 2003. |
ZHANG X. Research on PWM rectifier and its control strategy[D].Hefei: Hefei University of Technology, 2003. | |
34 | 黄勤, 严贺彪, 凌睿. 串联锂电池组无损均衡管理方案设计与实现[J]. 计算机工程, 2011, 37(12): 226-229. |
HUANG Q, YAN H B, LING R. Design and implementation of non-dissipative equalization management scheme for series connected Li-ion battery pack[J]. Computer Engineering, 2011, 37(12): 226-229. | |
35 | 席玲玲, 盖晓东, 杨世彦. 基于CAN总线的串联储能电源组均衡系统[J]. 电力电子技术, 2010, 44(9): 74-76. |
XI L L, GAI X D, YANG S Y. Equalization system for series-connected electrical source based on CANbus[J]. Power Electronics, 2010, 44(9): 74-76. | |
36 | 许苑, 李涛, 周杨林, 等. 退役电池储能系统中可重构电池网络技术应用[J]. 电源技术, 2020, 44(6): 908-910. |
XU Y, LI T, ZHOU Y L, et al. Application of reconfigurable battery network in retired battery energy storage system[J]. Chinese Journal of Power Sources, 2020, 44(6): 908-910. | |
37 | HAN W J, ZOU C F, ZHANG L, et al. Near-fastest battery balancing by cell/module reconfiguration[J]. IEEE Transactions on Smart Grid, 2019, 10(6): 6954-6964. |
38 | ZHANG Z L, CAI Y Y, ZHANG Y, et al. A distributed architecture based on microbank modules with self-reconfiguration control to improve the energy efficiency in the battery energy storage system[J]. IEEE Transactions on Power Electronics, 2016, 31(1): 304-317. |
39 | ALAHMAD M, HESS H, MOJARRADI M, et al. Battery switch array system with application for JPL's rechargeable micro-scale batteries[J]. Journal of Power Sources, 2008, 177(2): 566-578. |
40 | KIM T, QIAO W, QU L Y. Power electronics-enabled self-X multicell batteries: A design toward smart batteries[J]. IEEE Transactions on Power Electronics, 2012, 27(11): 4723-4733. |
41 | 慈松, 周杨林, 王红军, 等. 基于可重构电池网络的数字储能系统建模与运行控制——基站储能应用案例研究[J]. 全球能源互联网, 2021, 4(5): 427-435. |
CI S, ZHOU Y L, WANG H J, et al. Modeling and operation control of digital energy storage system based on reconfigurable battery network: A case study of base station energy storage application[J]. Journal of Global Energy Interconnection, 2021, 4(5): 427-435. | |
42 | 张从佳, 施敏达, 徐晨, 等. 基于动态可重构电池网络的储能系统本质安全机制及实例分析[J]. 储能科学与技术, 2022, 11(8): 2442-2451. |
ZHANG C J, SHI M D, XU C, et al. Intrinsic safety mechanism and case analysis of energy storage system based on dynamic reconfigurable battery network[J]. Energy Storage Science and Technology, 2022, 11(8): 2442-2451. | |
43 | 范茂松, 金翼, 杨凯, 等. 退役LiFePO4电池性能测评及储能应用[J]. 储能科学与技术, 2019, 8(2): 408-414. |
FAN M S, JIN Y, YANG K, et al. Testing of the performance and energy-storage applied for retired LiFePO4 batteries[J]. Energy Storage Science and Technology, 2019, 8(2): 408-414. | |
44 | 赵光金, 唐国鹏. 主被动均衡技术及其在电池梯次利用中的应用[J]. 电源技术, 2018, 42(7): 983-986, 1075. |
ZHAO G J, TANG G P. Active-passive hybrid equalization circuit design technology and its application in echelon use of lithium-ion power batteries[J]. Chinese Journal of Power Sources, 2018, 42(7): 983-986, 1075. | |
45 | 范茂松, 刘皓, 王凯丰, 等. 退役磷酸铁锂动力锂离子电池的适用性[J]. 电池, 2019, 49(1): 64-67. |
FAN M S, LIU H, WANG K F, et al. Applicability of ex-service lithium iron phosphate power Li-ion battery[J]. Battery Bimonthly, 2019, 49(1): 64-67. | |
46 | 胡玉霞, 赵光金. 锂离子电池在储能中的应用及安全问题分析[J]. 电源技术, 2021, 45(1): 119-122. |
HU Y X, ZHAO G J. Application of lithium ion battery in energy storage system and analysis of its safety problems[J]. Chinese Journal of Power Sources, 2021, 45(1): 119-122. | |
47 | 伍绍中, 李慧芳, 陈荣, 等. 锂离子电池热稳定性的快速评测方法研究[J]. 电源技术, 2020, 44(1): 35-37, 144. |
WU S Z, LI H F, CHEN R, et al. Study on rapid evaluation method of thermal stability of lithium ion batteries[J]. Chinese Journal of Power Sources, 2020, 44(1): 35-37, 144. | |
48 | 陈浩舟, 邹大中, 李勋, 等. 锂离子电池正极材料热稳定性研究[J]. 稀有金属与硬质合金, 2021, 49(5): 47-52. |
CHEN H Z, ZOU D Z, LI X, et al. Study on thermal stability of cathode materials for lithium-ion batteries[J]. Rare Metals and Cemented Carbides, 2021, 49(5): 47-52. | |
49 | 喻妍, 车海英, 杨轲, 等. 绝热加速量热仪在锂/钠离子电池研究中应用[J]. 化工进展, 2019, 38(4): 1597-1610. |
YU Y, CHE H Y, YANG K, et al. A review of the safety of secondary battery with adiabatic accelerated calorimeter[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1597-1610. | |
50 | RICHARDSON R R, OSBORNE M A, HOWEY D A. Battery health prediction under generalized conditions using a Gaussian process transition model[J]. Journal of Energy Storage, 2019, 23: 320-328. |
51 | GAN N F, SUN Z Y, ZHANG Z S, et al. Data-driven fault diagnosis of lithium-ion battery overdischarge in electric vehicles[J]. IEEE Transactions on Power Electronics, 2022, 37(4): 4575-4588. |
52 | 卢明哲. 动力电池SOH估计及故障预测方法研究[D]. 北京: 北京工业大学, 2015. |
LU M Z. Research on SOH estimation and fault prediction method of power battery[D].Beijing: Beijing University of Technology, 2015. | |
53 | LI H, LI H J, ZHU J H. Cluster analysis of echelon utilization of power battery based on machine learning[C]//Proc SPIE 12080, 2021, 12080: 208-213. |
54 | 李建林, 王哲, 许德智, 等. 退役动力电池梯次利用相关政策对比分析[J]. 现代电力, 2021, 38(3): 316-324. |
LI J L, WANG Z, XU D Z, et al. A comparative analysis of relevant policies is made on retired power batteries[J]. Modern Electric Power, 2021, 38(3): 316-324. | |
55 | 周媛, 王锋, 信天, 等. 退役动力电池梯次利用评估标准UL1974: 2018解读[J]. 电池, 2021, 51(4): 404-406. |
ZHOU Y, WANG F, XIN T, et al. Interpretation of the evaluation standard UL 1974: 2018 for echelon utilization of retired power battery[J]. Battery Bimonthly, 2021, 51(4): 404-406. | |
56 | 国家市场监督管理总局, 国家标准化管理委员会. 车用动力电池回收利用 再生利用 第3部分:放电规范: GB/T 33598.3—2021[S]. 北京: 中国标准出版社, 2021. |
State Administration of Market Supervision and Administration of the People's Republic of China, Standardization Administration of the People's Republic of China. Recovery of traction battery used in electric vehicle—Recycling—Part 3: Specification for discharging: GB/T 33598.3—2021[S]. Beijing: Standards Press of China, 2021. | |
57 | 国家市场监督管理总局, 国家标准化管理委员会. 车用动力电池回收利用 梯次利用 第4部分:梯次利用产品标识: GB/T 34015.4—2021[S]. 北京: 中国标准出版社, 2021. |
State Administration of Market Supervision and Administration of the People's Republic of China, Standardization Administration of the People's Republic of China. Recovery of traction battery used in electric vehicle—Echelon use—Part 4: Labels for echelon used battery products: GB/T 34015.4—2021[S]. Beijing: Standards Press of China, 2021. | |
58 | 国家市场监督管理总局, 国家标准化管理委员会. 车用动力电池回收利用 梯次利用 第3部分:梯次利用要求: GB/T 34015.3—2021[S]. 北京: 中国标准出版社, 2021. |
State Administration of Market Supervision and Administration of the People's Republic of China, Standardization Administration of the People's Republic of China. Recovery of traction battery used in electric vehicle—Echelon use—Part 3: Echelon using requirement: GB/T 34015.3—2021[S]. Beijing: Standards Press of China, 2021. | |
59 | 国家市场监督管理总局, 国家标准化管理委员会. 资源综合利用企业评价规范: GB/T 39780—2021[S]. 北京: 中国标准出版社, 2021. |
State Administration of Market Supervision and Administration of the People's Republic of China, Standardization Administration of the People's Republic of China. Specifications for evaluating enterprises in waste resource comprehensive utilization: GB/T 39780—2021[S]. Beijing: Standards Press of China, 2021. | |
60 | 国家市场监督管理总局, 国家标准化管理委员会. 废旧电池回收技术规范: GB/T 39224—2020[S]. 北京: 中国标准出版社, 2020. |
State Administration of Market Supervision and Administration of the People's Republic of China, Standardization Administration of the People's Republic of China. Technical specification for used batteries take-back: GB/T 39224—2020[S]. Beijing: Standards Press of China, 2020. | |
61 | 国家市场监督管理总局, 国家标准化管理委员会. 车用动力电池回收利用 管理规范 第1部分:包装运输: GB/T 38698.1—2020[S]. 北京: 中国标准出版社, 2020. |
State Administration of Market Supervision and Administration of the People's Republic of China, Standardization Administration of the People's Republic of China. Recycling of traction battery used in electric vehicle—Management specification—Part 1: Packing and transporting: GB/T 38698.1—2020[S]. Beijing: Standards Press of China, 2020. | |
62 | 国家市场监督管理总局, 国家标准化管理委员会. 车用动力电池回收利用 梯次利用 第2部分:拆卸要求: GB/T 34015.2—2020[S]. 北京: 中国标准出版社, 2020. |
State Administration of Market Supervision and Administration of the People's Republic of China, Standardization Administration of the People's Republic of China. Recycling of traction battery used in electric vehicle—Echelon use—Part 2: Removing requirements: GB/T 34015.2—2020[S]. Beijing: Standards Press of China, 2020. | |
63 | 国家市场监督管理总局, 国家标准化管理委员会. 废铅酸蓄电池回收技术规范: GB/T 37281—2019[S]. 北京: 中国标准出版社, 2019. |
State Administration of Market Supervision and Administration of the People's Republic of China, Standardization Administration of the People's Republic of China. Technical specification for recycling waste lead acid battery: GB/T 37281—2019[S]. Beijing: Standards Press of China, 2019. | |
64 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 车用动力电池回收利用 余能检测: GB/T 34015—2017[S]. 北京: 中国标准出版社, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Recycling of traction battery used in electric vehicle—Test of residual capacity: GB/T 34015—2017[S]. Beijing: Standards Press of China, 2017. | |
65 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 汽车动力蓄电池编码规则: GB/T 34014—2017[S]. 北京: 中国标准出版社, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Coding regulation for automotive traction battery: GB/T 34014—2017[S]. Beijing: Standards Press of China, 2017. | |
66 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车用动力蓄电池产品规格尺寸: GB/T 34013—2017[S]. 北京: 中国标准出版社, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Dimension of traction battery for electric vehicles: GB/T 34013—2017[S]. Beijing: Standards Press of China, 2017. | |
67 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 车用动力电池回收利用 拆解规范: GB/T 33598—2017[S]. 北京: 中国标准出版社, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Recycling of traction battery used in electric vehicle—Dismantling specification: GB/T 33598—2017[S]. Beijing: Standards Press of China, 2017. | |
68 | 国家能源局. 电力储能用锂离子梯次利用动力电池再退役技术条件: DL/T 2316—2021[S]. 北京: 中国电力出版社, 2021. |
National Energy Administration of the People's Republic of China. Decommissioning specification of reused Lithium ion battery used for power energy storage: DL/T 2316-2021[S]. Beijing: China Electric Power Press, 2021. | |
69 | 国家能源局. 电力储能用梯次利用锂离子电池系统技术导则: DL/T 2315—2021[S]. 北京: 中国电力出版社, 2021. |
National Energy Bureau of the People's Republic of China. Technical quide for reused lithium ion battery system for electrical energy storage: DL/T 2315—2021[S]. Beijing: China Electric Power Press, 2021. | |
70 | 中华人民共和国工业和信息化部. 通信基站梯次利用车用动力电池的技术要求与试验方法 第1部分: 磷酸铁锂电池: YD/T 3768.1—2020[S]. 北京: 人民邮电出版社, 2020. |
Ministry of Industry and Information of the People's Republic of China. Technical requirement and test methods of echelon using EV batteries for telecommunication—Part l: LiFePO4 battery: YD/T 3768.1—2020[S]. Beijing: Posts & Telecom Press, 2020. | |
71 | 谭震, 范茂松, 赵光金, 等. 动力电池梯次利用国家标准体系分析[J]. 电池, 2022, 52(4): 443-446. |
TAN Z, FAN M S, ZHAO G J, et al. Analysis of national standard system for power battery echelon utilization[J]. Battery Bimonthly, 2022, 52(4): 443-446. | |
72 | 周媛, 信天, 王鑫, 等. 动力电池梯次利用标准化现状探讨[J]. 电池, 2021, 51(5): 534-537. |
ZHOU Y, XIN T, WANG X, et al. Discussion on current situation of power battery echelon utilization standardization[J]. Battery Bimonthly, 2021, 51(5): 534-537. | |
73 | 苑媛, 厉鹏, 高月, 等. 国内退役电池梯次利用安全标准现状及展望[J]. 安全、健康和环境, 2023, 23(2): 1-7. |
YUAN Y, LI P, GAO Y, et al. Current situation and prospect of safety standards for cascade utilization of retired batteries in China[J]. Safety Health & Environment, 2023, 23(2): 1-7. | |
74 | 周宜行. 梯次电池储能系统容量配置方法研究[D]. 长沙: 湖南大学, 2020. |
ZHOU Y X. Research on capacity configuration method of cascade battery energy storage system[D].Changsha: Hunan University, 2020. | |
75 | 张雷, 刘颖琦, 张力, 等. 中国储能产业中动力电池梯次利用的商业价值[J]. 北京理工大学学报(社会科学版), 2018, 20(6): 34-44. |
ZHANG L, LIU Y Q, ZHANG L, et al. Commercial value of power battery echelon utilization in China's energy storage industry[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2018, 20(6): 34-44. | |
76 | 苏庆列, 林金海. 退役动力电池的梯次利用技术及经济效益分析[J]. 南方农机, 2021, 52(17): 152-154. |
SU Q L, LIN J H. Echelon utilization technology and economic benefit analysis of decommissioned power battery[J]. China Southern Agricultural Machinery, 2021, 52(17): 152-154. | |
77 | 高明飞, 马科, 李红宇, 等. 退役动力电池作为储能系统应用的探讨[J]. 科技与创新, 2020(19): 154-155. |
GAO M F, MA K, LI H Y, et al. Discussion on the application of retired power battery as energy storage system[J]. Science and Technology & Innovation, 2020(19): 154-155. |
[1] | 范茂松, 耿萌萌, 赵光金, 杨凯, 王放放, 刘皓. 基于多频点阻抗的梯次利用电池分选技术研究[J]. 储能科学与技术, 2023, 12(7): 2202-2210. |
[2] | 于会群, 胡哲豪, 彭道刚, 孙浩益. 退役动力电池回收及其在储能系统中梯次利用关键技术[J]. 储能科学与技术, 2023, 12(5): 1675-1685. |
[3] | 黄渭彬, 张彪, 范金成, 杨伟, 邹汉波, 陈胜洲. ZIF-8复合PEO基固态电解质的制备与改性研究[J]. 储能科学与技术, 2023, 12(4): 1083-1092. |
[4] | 康小平, 聂慧慧, 郜敏, 吴凤彪. 电动汽车全生命周期碳排放[J]. 储能科学与技术, 2023, 12(3): 976-984. |
[5] | 程志翔, 曹伟, 户波, 程云芳, 李鑫, 姜丽华, 金凯强, 王青松. 储能用大容量磷酸铁锂电池热失控行为及燃爆传播特性[J]. 储能科学与技术, 2023, 12(3): 923-933. |
[6] | 刘阳, 滕卫军, 谷青发, 孙鑫, 谭宇良, 方知进, 李建林. 规模化多元电化学储能度电成本及其经济性分析[J]. 储能科学与技术, 2023, 12(1): 312-318. |
[7] | 李泓, 张强. 蓄势赋能谋发展,勇毅笃行谱新篇[J]. 储能科学与技术, 2022, 11(9): 2691-2701. |
[8] | 曹志成, 周开运, 朱家立, 刘高明, 严慜, 汤舜, 曹元成, 程时杰, 张炜鑫. 锂离子电池储能系统消防技术的中国专利分析[J]. 储能科学与技术, 2022, 11(8): 2664-2670. |
[9] | 林楠, KREWER Ulrike, ZAUSCH Jochen, STEINER Konrad, 林海波, 冯守华. 电化学能量储存和转换体系多物理场模型的建立及其应用[J]. 储能科学与技术, 2022, 11(4): 1149-1164. |
[10] | 赵志伟, 杨智, 彭章泉. 飞行时间二次离子质谱在锂基二次电池中的应用[J]. 储能科学与技术, 2022, 11(3): 781-794. |
[11] | 施思齐, 涂章伟, 邹欣欣, 孙拾雨, 杨正伟, 刘悦. 数据驱动的机器学习在电化学储能材料研究中的应用[J]. 储能科学与技术, 2022, 11(3): 739-759. |
[12] | 李雄, 李培强. 梯次利用动力电池规模化应用经济性及经济边界分析[J]. 储能科学与技术, 2022, 11(2): 717-725. |
[13] | 祁梦瑶, 侯一晨, 陈磊, 杨立军. 新型径向流动全钒液流电池单元数值模拟[J]. 储能科学与技术, 2022, 11(10): 3209-3220. |
[14] | 刘坚. 适应可再生能源消纳的储能技术经济性分析[J]. 储能科学与技术, 2022, 11(1): 397-404. |
[15] | 汤匀, 岳芳, 郭楷模, 李岚春, 陈伟. 下一代电化学储能技术国际发展态势分析[J]. 储能科学与技术, 2022, 11(1): 89-97. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||