1 |
陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术, 2021, 10(5): 1477-1485.
|
|
CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485.
|
2 |
鲁志颖, 江杉, 李全龙, 等. 全钒液流电池在充电结束搁置阶段的开路电压变化[J]. 储能科学与技术, 2022, 11(7): 2046-2050.
|
|
LU Z Y, JIANG S, LI Q L, et al. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery[J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050.
|
3 |
陶文铨. 传热与流动问题的多尺度数值模拟: 方法与应用[M]. 北京: 科学出版社, 2009.TAO W Q. Multiscale numerical simulation of heat transfer and flow problems: Methods and applications[M]. Beijing: Science Press, 2009.
|
4 |
李强, 王俊楠, 孙红. 钒液流电池石墨毡电极的MWCNTs-COOH-NS修饰[J]. 储能科学与技术, 2021, 10(6): 2097-2105.
|
|
LI Q, WANG J N, SUN H. Graphite felt electrode modified with MWCNTs-COOH-NS for vanadium flow battery[J]. Energy Storage Science and Technology, 2021, 10(6): 2097-2105.
|
5 |
ZHANG Z H, ZHAO T S, BAI B F, et al. A highly active biomass-derived electrode for all vanadium redox flow batteries[J]. Electrochimica Acta, 2017, 248: 197-205.
|
6 |
ZHANG H Z, ZHANG H M, LI X F, et al. Nanofiltration (NF) membranes: The next generation separators for all vanadium redox flow batteries (VRBs)? [J]. Energy & Environmental Science, 2011, 4(5): 1676.
|
7 |
ZHANG H Z, ZHANG H M, LI X F, et al. Silica modified nanofiltration membranes with improved selectivity for redox flow battery application[J]. Energy Environ Sci, 2012, 5(4): 6299-6303.
|
8 |
王瑄, 叶强. 全钒液流电池电堆局部供液不足导致副反应加剧的现象[J]. 储能科学与技术, 2022, 11(5): 1455-1467.
|
|
WANG X, YE Q. The aggravation of side reactions caused by insufficient localized liquid supply in an all-vanadium redox flow battery stack[J]. Energy Storage Science and Technology, 2022, 11(5): 1455-1467.
|
9 |
曲大为, 杨帆, 范鲁艳, 等. 钒氧化还原流电池技术综述[J]. 吉林大学学报(工学版), 2022, 52(1): 1-24.
|
|
QU D W, YANG F, FAN L Y, et al. Review of vanadium redox flow battery technology[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(1): 1-24.
|
10 |
SHRIPAD T R. Chapter six-Chemical energy storage[M]// Hitesh Bindra, Shripad Revankar. Techno-economic Integration of renewable and nuclear energy. United States: Academic Press, 2019: 177-227.
|
11 |
SHAH A A, WATT-SMITH M J, WALSH F C. A dynamic performance model for redox-flow batteries involving soluble species[J]. Electrochimica Acta, 2008, 53(27): 8087-8100.
|
12 |
郭煜石. 钒电池正极电解液物理化学性质及其对稳定性影响机制研究[D]. 沈阳: 沈阳化工大学, 2021.
|
|
GUO Y S. Physical and chemical properties of vanadium battery cathode electrolyte and its influence mechanism on stability[D]. Shenyang: Shenyang University Of Chemical Technology, 2021.
|
13 |
LU M Y, DENG Y M, YANG W W, et al. A novel rotary serpentine flow field with improved electrolyte penetration and species distribution for vanadium redox flow battery[J]. Electrochimica Acta, 2020, 361: doi: 10.1016/j. electacta. 2020. 137089.
|
14 |
YOU X, YE Q, CHENG P. Scale-up of high power density redox flow batteries by introducing interdigitated flow fields[J]. International Communications in Heat and Mass Transfer, 2016, 75: 7-12.
|
15 |
SUN Z W, DUAN Z N, BAI J Q, et al. Numerical study of the performance of all vanadium redox flow battery by changing the cell structure[J]. Journal of Energy Storage, 2020, 29: doi: 10.1016/j. est. 2020. 101370.
|
16 |
ALI E, KWON H, KIM J, et al. Numerical study on serpentine design flow channel configurations for vanadium redox flow batteries[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j. eat. 2020. 101802.
|
17 |
SKYLLAS-KAZACOS M, MENICTAS C, LIM T. Redox flow batteries for medium-to large-scale energy storage[M]// Electricity Transmission, Distribution and Storage Systems. Amsterdam: Elsevier, 2013: 398-441.
|
18 |
KEAR G, SHAH A A, WALSH F C. Development of the all-vanadium redox flow battery for energy storage: A review of technological, financial and policy aspects[J]. International Journal of Energy Research, 2012, 36(11): 1105-1120.
|
19 |
邵军康, 李鑫, 莫言青, 等. 全钒液流电池建模与流量特性分析[J]. 储能科学与技术, 2020, 9(2): 645-655.
|
|
SHAO J K, LI X, MO Y Q, et al. Analysis of modeling and flow characteristics of vanadium redox flow battery[J]. Energy Storage Science and Technology, 2020, 9(2): 645-655.
|
20 |
ZHOU H T, ZHANG H M, ZHAO P, et al. A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery[J]. Electrochimica Acta, 2006, 51(28): 6304-6312.
|
21 |
YOU D J, ZHANG H M, CHEN J. A simple model for the vanadium redox battery[J]. Electrochimica Acta, 2009, 54(27): 6827-6836.
|
22 |
YAMAMURA T, WATANABE N, YANO T, et al. Electron-transfer kinetics of Np3+/Np4+, NpO2 +/NpO2 2+, V2+/V3+, and VO2+/VO2 + at carbon electrodes[J]. Journal of the Electrochemical Society, 2005, 152(4): A830.
|
23 |
MA X K, ZHANG H M, XING F. A three-dimensional model for negative half cell of the vanadium redox flow battery[J]. Electrochimica Acta, 2011, 58: 238-246.
|
24 |
SUM E, SKYLLAS-KAZACOS M. A study of the V(II)/V(III) redox couple for redox flow cell applications[J]. Journal of Power Sources, 1985, 15(2/3): 179-190.
|
25 |
POURBAIX M. Atlas of electrochemical equilibria in aqueous solution[J].National Association of Corrosion Engineers,1974, 307.
|
26 |
GURIEFF N, CHEUNG C Y, TIMCHENKO V, et al. Performance enhancing stack geometry concepts for redox flow battery systems with flow through electrodes[J]. Journal of Energy Storage, 2019, 22: 219-227.
|