储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2333-2348.doi: 10.19799/j.cnki.2095-4239.2023.0425

• 热点点评 • 上一篇    下一篇

锂电池百篇论文点评(2023.4.12023.5.31

乔荣涵(), 朱璟, 申晓宇, 岑官骏, 郝峻丰, 季洪祥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()   

  1. 中国科学院物理研究所,北京 100190
  • 收稿日期:2022-06-25 出版日期:2023-07-05 发布日期:2023-07-25
  • 通讯作者: 黄学杰 E-mail:qiaoronghan15@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
  • 作者简介:乔荣涵(1998—),男,博士研究生,研究方向为锂离子电池,E-mail:qiaoronghan15@mails.ucas.ac.cn

Reviews of selected 100 recent papers for lithium batteriesApr. 12023 to May 312023

Ronghan QIAO(), Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Junfeng HAO, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()   

  1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2022-06-25 Online:2023-07-05 Published:2023-07-25
  • Contact: Xuejie HUANG E-mail:qiaoronghan15@mails.ucas.ac.cn;xjhuang@iphy.ac.cn

摘要:

该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science 从2023年4月1日至2023年5月31日上线的锂电池研究论文,共有3612篇,选择其中100篇加以评论。正极材料的研究集中于钴酸锂、尖晶石结构LiNi0.5Mn1.5O4材料的表面包覆和掺杂改性,以及其在长循环中的结构演变等。硅基复合负极材料的研究包括材料制备和对电极结构的优化以缓冲体积变化,并重点关注了功能性黏结剂的应用和界面的改性。金属锂负极的研究集中于金属锂的表面修饰。固态电解质的研究主要包括对硫化物固态电解质、氯化物固态电解质、聚合物固态电解质和复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注层状氧化物正极材料在硫化物、氧化物固态电池中的应用。锂硫电池的研究重点是提高硫正极的活性,抑制“穿梭”效应。电池技术方面的研究还包括干法等电极制备技术。测试技术涵盖了锂沉积和正极中锂离子输运等方面。理论模拟工作涉及电解液的物理性质模拟,界面问题工作侧重于固态电池中电极界面的稳定性研究。

关键词: 锂电池, 正极材料, 负极材料, 电解质, 电池技术

Abstract:

This bimonthly review paper highlights a comprehensive overview of the latest research on lithium batteries. A total of 3612 online studies from April 1, 2023, to May 31, 2023, were examined through the Web of Science database, and 100 studies were selected for highlighting in this review. The selected studies cover various aspects of lithium batteries, focusing on cathode materials such as LiNi0.5Mn1.5O4 and LiCoO2. Investigations into the effects of doping and interface modifications on their electrochemical performances and structural evolution during prolonged cycling are discussed. For alloying mechanisms in anode materials, such as silicon-based composite materials, many researchers emphasize material preparation, optimization of electrode structures to buffer volume changes, and the application of functional binders and interface modification. Great efforts have been devoted to designing three-dimensional electrode structures, interface modifications, and controlling the inhomogeneous plating of lithium metal anode. Studies on solid-state electrolytes focus on the structure design and performances in sulfide-based, chloride-based, and polymer-based solid-state electrolytes and their composites. In contrast, liquid electrolytes are improved through optimal solvent and lithium salt design for different battery applications and incorporating novel functional additives. For solid-state batteries, studies mainly investigate the compatibility of layered oxide cathode materials with sulfide-based and oxide-based solid-state electrolytes. To address the challenges in Li-S batteries, composite sulfur cathode with high ion/electron conductive matrix and functional binders are explored to suppress the "shuttle effect" and activate sulfur. Additionally, this review presents work related to dry electrode coating technology, characterization techniques of lithium-ion transport in the cathode, lithium deposition, and theoretical calculations to understand electrolyte viscosity and the solid-state electrolyte/cathode interface. This review provides valuable insights into the advancements in lithium batteries, contributing to the overall understanding and progress in the field.

Key words: lithium batteries, cathode material, anode material, electrolyte, battery technology

中图分类号: