储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2333-2348.doi: 10.19799/j.cnki.2095-4239.2023.0425
乔荣涵(), 朱璟, 申晓宇, 岑官骏, 郝峻丰, 季洪祥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2022-06-25
出版日期:
2023-07-05
发布日期:
2023-07-25
通讯作者:
黄学杰
E-mail:qiaoronghan15@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
作者简介:
乔荣涵(1998—),男,博士研究生,研究方向为锂离子电池,E-mail:qiaoronghan15@mails.ucas.ac.cn;
Ronghan QIAO(), Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Junfeng HAO, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2022-06-25
Online:
2023-07-05
Published:
2023-07-25
Contact:
Xuejie HUANG
E-mail:qiaoronghan15@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science 从2023年4月1日至2023年5月31日上线的锂电池研究论文,共有3612篇,选择其中100篇加以评论。正极材料的研究集中于钴酸锂、尖晶石结构LiNi0.5Mn1.5O4材料的表面包覆和掺杂改性,以及其在长循环中的结构演变等。硅基复合负极材料的研究包括材料制备和对电极结构的优化以缓冲体积变化,并重点关注了功能性黏结剂的应用和界面的改性。金属锂负极的研究集中于金属锂的表面修饰。固态电解质的研究主要包括对硫化物固态电解质、氯化物固态电解质、聚合物固态电解质和复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注层状氧化物正极材料在硫化物、氧化物固态电池中的应用。锂硫电池的研究重点是提高硫正极的活性,抑制“穿梭”效应。电池技术方面的研究还包括干法等电极制备技术。测试技术涵盖了锂沉积和正极中锂离子输运等方面。理论模拟工作涉及电解液的物理性质模拟,界面问题工作侧重于固态电池中电极界面的稳定性研究。
中图分类号:
乔荣涵, 朱璟, 申晓宇, 岑官骏, 郝峻丰, 季洪祥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.4.1—2023.5.31)[J]. 储能科学与技术, 2023, 12(7): 2333-2348.
Ronghan QIAO, Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Junfeng HAO, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2023 to May 31, 2023)[J]. Energy Storage Science and Technology, 2023, 12(7): 2333-2348.
1 | ZHUANG Z F, WANG J X, JIA K, et al. Ultrahigh-voltage LiCoO2 at 4.7 V by interface stabilization and band structure modification[J]. Advanced Materials, 2023, 35(22): doi: 10.1002/adma.202212059. |
2 | TAN X H, ZHANG Y X, XU S Y, et al. High-entropy surface complex stabilized LiCoO2 cathode[J]. Advanced Energy Materials, 2023, 13(24): doi: 10.1002/aenm.202300147. |
3 | COURBARON G, PETIT E, SERRANO-SEVILLANO J, et al. Improved electrochemical performance for high-voltage spinel LiNi0.5Mn1.5O4 modified by supercritical fluid chemical deposition[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 2812-2824. |
4 | KHOTIMAH C, WANG F M, WOHLFAHRT-MEHRENS M, et al. Failure mechanisms of high-voltage spinel LiNi0.5Mn1.5O4 with different morphologies: Effect of self-regulation by lithium benzimidazole salt additive[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(11): 4374-4388. |
5 | MENG J N, ROBLES A, JALIFE S, et al. Cyclotetrabenzil derivatives for electrochemical lithium-ion storage[J]. Angewandte Chemie (International Ed in English), 2023: e202300892-e202300892. |
6 | SHEN J Q, SONG Y L, HE C T, et al. Pseudo single lithium-ion conductors enabled by a metal0-organic framework with biomimetic lithium-ion chains for lithium metal batteries[J]. Materials Chemistry Frontiers, 2023, 7(12): 2436-2442. |
7 | WANG X X, WANG Y L, MA H R, et al. Solid silicon nanosheet sandwiched by self-assembled honeycomb silicon nanosheets enabling long life at high current density for a lithium-ion battery anode[J]. ACS Applied Materials & Interfaces, 2023, 15(12): 15409-15419. |
8 | ZHANG B, LI Z, XIE H, et al. Cross-linking chemistry enables robust conductive polymeric network for high-performance silicon microparticle anodes in lithium-ion batteries[J]. Journal of Power Sources, 2023, 556: 232495. |
9 | LIU H, ZHANG J L, LIANG G Q, et al. Selective lithium recovery from black powder of spent lithium-ion batteries via sulfation reaction: Phase conversion and impurities influence[J]. Rare Metals, 2023, 42(7): 2350-2360. |
10 | HONG D G, JEONG D, KOONG C Y, et al. Ion-conducting cross-linked polyphosphazene binders for high-performance silicon anodes in lithium-ion batteries[J]. ACS Applied Polymer Materials, 2023, 5(4): 2617-2627. |
11 | BÉTERMIER F, DAHER N, BLANQUER L A, et al. Understanding the electrochemical performances of Si anodes incorporating mechanically interlocked binders prepared from α-cyclodextrin-based polyrotaxanes[J]. Chemistry of Materials, 2023, 35(3): 937-947. |
12 | CAI X Y, XU J J, SHAO Y X, et al. Carboxymethyl three-dimensional cross-linked biopolymer binder for high-performance silicon anodes in lithium-ion batteries[J]. ACS Applied Energy Materials, 2023, 6(9): 4559-4569. |
13 | DING X Y, XIN Y H, WANG Y S, et al. Artificial solid electrolyte interphase engineering toward dendrite-free lithium anodes[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(18): 6879-6889. |
14 | BOLLOJU S, ABDOLLAHIFAR M, PARTHASARATHI S K, et al. Efficient utilization of macropores as artificial solid-electrolyte interphase channels for high-capacity silicon/graphite anode materials[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(6): 2623-2633. |
15 | HUANG Z J, LAI J C, LIAO S L, et al. A salt-philic, solvent-phobic interfacial coating design for lithium metal electrodes[J]. Nature Energy, 2023, 8(6): 577-585. |
16 | LI C, LIANG Z, LI Z, et al. Self-assembly monolayer inspired stable artificial solid electrolyte interphase design for next-generation lithium metal batteries[J]. Nano Letters, 2023, doi: 10.1021/acs.nanolett.3c00783. |
17 | ZHANG Y H, ZHAO P Y, NIE Q N, et al. Enabling 420 Whkg-1 stable lithium-metal pouch cells by lanthanum doping[J]. Advanced Materials, 2023: doi: 10.1002/adma.202211032. |
18 | ZHU X X, CHENG H W, LYU S B, et al. High-energy-heavy-ion engineering low-tortuosity and high-porosity 3D metallic electrodes for long-life lithium anodes[J]. Advanced Energy Materials, 2023, 13(24): doi: 10.1002/aenm.202300129. |
19 | LI X H, YE Q, WU Z, et al. High-voltage all-solid-state lithium batteries with Li3InCl6 electrolyte and LiNbO3 coated lithium-rich manganese oxide cathode[J]. Electrochimica Acta, 2023, 453: doi: 10.1016/j.electacta.2023.142361. |
20 | LIU C, CHEN B, ZHANG T, et al. Electron redistribution enables redox-resistible Li6PS5Cl towards high-performance all-solid-state lithium batteries[J]. Angewandte Chemie-International Edition, 2023: doi: 10.1002/anie.202302655. |
21 | GAMO H, KUSABA I, HIKIMA K, et al. Rapid solution synthesis of argyrodite-type Li6PS5X (X=Cl, Br, and I) solid electrolytes using excess sulfur[J]. Inorganic Chemistry, 2023, 62(15): 6076-6083. |
22 | YIN Y C, YANG J T, LUO J D, et al. A LaCl3-based lithium superionic conductor compatible with lithium metal[J]. Nature, 2023, 616(7955): 77-83. |
23 | ZHAO E Y, LUO S Q, HU A Y, et al. Rational design of an in-build quasi-solid-state electrolyte for high-performance lithium-ion batteries with the silicon-based anode[J]. Chemical Engineering Journal, 2023, 463: doi: 10.1016/j.cej.2023.142306. |
24 | ZHU T Y, STERNLICHT H, HA Y, et al. Formation of hierarchically ordered structures in conductive polymers to enhance the performances of lithium-ion batteries[J]. Nature Energy, 2023, 8(2): 129-137. |
25 | WANG H N, CHENG H, LI D G, et al. Lithiated copper polyphthalocyanine with extended π-conjugation induces LiF-rich solid electrolyte interphase toward long-life solid-state lithium-metal batteries[J]. Advanced Energy Materials, 2023, 13(16): doi: 10.1002/aenm.202204425. |
26 | LU X Z, CHENG Y F, LI M H, et al. A stable polymer-based solid-state lithium metal battery and its interfacial characteristics revealed by cryogenic transmission electron microscopy[J]. Advanced Functional Materials, 2023, 33(12): doi: 10.1002/adfm.202212847. |
27 | YANG N, CUI Y, SU H, et al. A chemically bonded ultraconformal layer between the elastic solid electrolyte and lithium anode for high-performance lithium metal batteries[J]. Angewandte Chemie (International ed. in English), 2023: e202304339-e202304339. |
28 | HUANG B Q, LIU J M, HU X R, et al. Porous CoP/C derived from metal-organic framework as high-performance anode materials for superior lithium storage[J]. Ionics, 2023, 29(5): 2087-2092. |
29 | SHI P R, MA J B, LIU M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nature Nanotechnology, 2023, 18(6): 602-610. |
30 | ZOU Y G, LIU G, WANG Y Q, et al. Intermolecular interactions mediated nonflammable electrolyte for high-voltage lithium metal batteries in wide temperature[J]. Advanced Energy Materials, 2023, 13(19): doi: 10.1002/aenm.202300443. |
31 | CHENG H, JIN X, LIU S, et al. Highly stable lithium-ion wide-temperature storage performance achieved via anion-dominated solvation structure and electric double-layer engineering[J]. Journal of Power Sources, 2023, 567: 232975. |
32 | LU Y, ZHANG W, LIU S, et al. Tuning the Li plus solvation structure by a "bulky coordinating" strategy enables nonflammable electrolyte for ultrahigh voltage lithium metal batteries[J]. Acs Nano, 2023, doi: 10.1021/acsnano.3c02948. |
33 | ZHENG Y W, JI H Q, QIAN T, et al. Achieving rapid ultralow-temperature ion transfer via constructing lithium-anion nanometric aggregates to eliminate Li+-dipole interactions[J]. Nano Letters, 2023, 23(8): 3181-3188. |
34 | WANG Y, CHEN Z, WU Y X, et al. PVDF-HFP/PAN/PDA@LLZTO composite solid electrolyte enabling reinforced safety and outstanding low-temperature performance for quasi-solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(17): 21526-21536. |
35 | BUYUKER I S, PEI B, ZHOU H, et al. Voltage and temperature limits of advanced electrolytes for lithium-metal batteries[J]. ACS Energy Letters, 2023, 8(4): 1735-1743. |
36 | ADIRAJU V A K, CHAE O B, ROBINSON J R, et al. Highly soluble lithium nitrate-containing additive for carbonate-based electrolyte in lithium metal batteries[J]. ACS Energy Letters, 2023, 8(5): 2440-2446. |
37 | JIANG G X, LIU J D, HE J A, et al. Hydrofluoric acid-removable additive optimizing electrode electrolyte interphases with Li+ conductive moieties for 4.5 V lithium metal batteries[J]. Advanced Functional Materials, 2023, 33(12): doi: 10.1002/adfm.202214422. |
38 | NGUYEN M T, PHAM H Q, BERROCAL J A, et al. An electrolyte additive for the improved high voltage performance of LiNi0.5Mn1.5O4 (LNMO) cathodes in Li-ion batteries[J]. Journal of Materials Chemistry A, 2023, 11(14): 7670-7678. |
39 | REN Z Q, QIU H Y, FAN C, et al. Delicately designed cyano-siloxane as multifunctional additive enabling high voltage LiNi0.9Co0.05Mn0.05O2/graphite full cell with long cycle life at 50 ℃[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202302411. |
40 | LIANG J Y, ZHANG Y Y, XIN S, et al. Mitigating swelling of the solid electrolyte interphase using an inorganic anion switch for low-temperature lithium-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(16): doi: 10.1002/anie.202300384. |
41 | ZHANG X H, CUI Z H, JO E, et al. Inhibition of transition-metal dissolution with advanced electrolytes in batteries with silicon-graphite anodes and high-nickel cathodes[J]. Energy Storage Materials, 2023, 56: 562-571. |
42 | AN K, JOO M J, TRAN Y H T, et al. Ultrafast charging of a 4.8 V manganese-rich cathode-based lithium metal cell by constructing robust solid electrolyte interphases[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202301755. |
43 | GUO K L, ZHU C L, WANG H P, et al. Conductive Li+ moieties-rich cathode electrolyte interphase with electrolyte additive for 4.6 V well-cycled Li||LiCoO2 batteries[J]. Advanced Energy Materials, 2023, 13(20): doi: 10.1002/aenm.202204272. |
44 | DU J M, DUAN X R, WANG W Y, et al. Mitigating concentration polarization through acid-base interaction effects for long-cycling lithium metal anodes[J]. Nano Letters, 2023, 23(8): 3369-3376. |
45 | BOORBOOR AJDARI F, FATHOLLAHI ZONOUZ A, HEYDARI A, et al. Exploring the effects of dopamine and DMMP additives on improving the cycle boosting and nonflammability of electrolytes in full-cell lithium-ion batteries (18650)[J]. The Journal of Physical Chemistry C, 2023, 127(17): 8195-8207. |
46 | KUNG Y R, LI C Y, HASIN P, et al. Effects of butadiene sulfone as an electrolyte additive on the formation of solid electrolyte interphase in lithium-ion batteries based on Li4Ti5O12 anode materials[J]. Polymers, 2023, 15(8): 1965. |
47 | BHARGAV A, ASL H Y, MANTHIRAM A. Mechanistic understanding of lithium-anode protection by organosulfide-based solid-electrolyte interphases and its implications[J]. Journal of Materials Chemistry A, 2023, 11(18): 9772-9783. |
48 | OH M G, KWAK S, AN K, et al. Perfluoro macrocyclic ether as an ambifunctional additive for high-performance SiO and nickel 88%-based high-energy Li-ion battery[J]. Advanced Functional Materials, 2023, 33(21): doi: 10.1002/adfm.202212890. |
49 | MOON H, NAM H, KIM M P, et al. Elastic interfacial layer enabled the high-temperature performance of lithium-ion batteries via utilization of synthetic fluorosulfate additive[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202303029. |
50 | TIAN R Z, WANG Z Y, LIAO J G, et al. High-voltage stability of small-size single crystal Ni-rich layered cathode for sulfide-based all-solid-state lithium battery at 4.5 V[J]. Advanced Energy Materials, 2023: doi: 10.1002/aenm.202300850. |
51 | KIM J, KIM M J, KIM J, et al. High-performance all-solid-state batteries enabled by intimate interfacial contact between the cathode and sulfide-based solid electrolytes[J]. Advanced Functional Materials, 2023, 33(12): doi: 10.1002/adfm.202211355. |
52 | ZOU C F, ZANG Z H, TAO X Y, et al. Stabilized cathode/sulfide electrolyte interface through conformally interfacial nanocoating for all-solid-state batteries[J]. ACS Applied Energy Materials, 2023, 6(6): 3599-3607. |
53 | FENG L, YIN Z W, WANG C W, et al. Glassy/ceramic Li2TiO3/LixByOz analogous "solid electrolyte interphase" to boost 4.5 V LiCoO2 in sulfide-based all-solid-state batteries[J]. Advanced Functional Materials, 2023, 33(16): doi: 10.1002/adfm.202210744. |
54 | ZHONG Y, FAN Z Z, ZHANG D Z, et al. Surface construction of a high-ionic-conductivity buffering layer on a LiNi0.6Co0.2Mn0.2O2 cathode for stable all-solid-state sulfide-based batteries[J]. Journal of Electronic Materials, 2023, 52(5): 2904-2912. |
55 | LI Z, MIAO J, HU W, et al. Stabilizing the oxide cathode/sulfide solid electrolyte interface via a novel polyaniline coating prepared by ball milling[J]. Chemical Communications, 2023, 59(37): 5627-5630. |
56 | KIM Y, STEPIEN D, MOON H, et al. Artificial interphase design employing inorganic-organic components for high-energy lithium-metal batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(17): 20987-20997. |
57 | KIM J S, JUNG S, KWAK H, et al. Synergistic halide-sulfide hybrid solid electrolytes for Ni-rich cathodes design guided by digital twin for all-solid-State Li batteries[J]. Energy Storage Materials, 2023, 55: 193-204. |
58 | CHANG X S, WENG W, LI M Q, et al. LiAlO2-modified Li negative electrode with Li10GeP2S12 electrolytes for stable all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(17): 21179-21186. |
59 | CRONAU M, SZABO M, RENZ D, et al. Deposition-type lithium metal all-solid-state batteries: About the importance of stack-pressure control and the benefits of hot pressing during initial cycling[J]. Advanced Materials Interfaces, 2023, 10(8): doi: 10.1002/admi. 202202475. |
60 | WAN H L, WANG Z Y, LIU S F, et al. Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design[J]. Nature Energy, 2023, 8(5): 473-481. |
61 | ZUO M X, BI Z J, GUO X X. In-situ solidification of plastic interlayers enabling high-voltage solid lithium batteries with poly(ethylene oxide) based polymer electrolytes[J]. Chemical Engineering Journal, 2023, 463: doi: 10.1016/j.cej.2023.142463. |
62 | KIM W, NOH J, LEE S, et al. Aging property of halide solid electrolyte at the cathode interface[J]. Advanced materials (Deerfield Beach, Fla.), 2023, doi: 10.1002/adma.202301631: e2301631-e2301631. |
63 | LIANG J W, LI X N, KIM J T, et al. Halide layer cathodes for compatible and fast-charged halides-based all-solid-state Li metal batteries[J]. Angewandte Chemie International Edition, 2023, 62(13): doi: 10.1002/anie.202217081. |
64 | LIU C J, MIAO C, HE M Y, et al. Optimized layered ternary LiNi0.5Co0.2Mn0.3O2 cathode materials modified with ultrathin Li3InCl6 fast ion conductor layer for lithium-ion batteries[J]. Journal of Power Sources, 2023, 566: doi: 10.1016/j.jpowsour.2023.232961. |
65 | HU X C, CHEN S J, WANG Z Y, et al. Microstructure of the Li-Al-O second phases in garnet solid electrolytes[J]. Nano Letters, 2023, 23(3): 887-894. |
66 | ZHENG C J, LU Y, CHANG Q A, et al. High-performance garnet-type solid-state lithium metal batteries enabled by scalable elastic and Li+-conducting interlayer[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202302729. |
67 | YAO X H, LU X K, ZHOU Y D, et al. Rectifying interphases for preventing Li dendrite propagation in solid-state electrolytes[J]. Energy & Environmental Science, 2023, 16(5): 2167-2176. |
68 | XU H, ZHU Q, ZHAO Y, et al. Phase-changeable dynamic conformal electrode/electrolyte interlayer enabling pressure-independent solid-state lithium metal batteries[J]. Advanced Materials, 2023, doi: 10.1002/adma.202212111. |
69 | WU Y C, CHUNG S H. Integrated high-sulfur-loading polysulfide/carbon cathode in lean-electrolyte cell toward high-energy-density lithium-sulfur cells with stable cyclability[J]. Journal of Materials Chemistry A, 2023, 11(17): 9455-9463. |
70 | GAO X S, ZHENG C Y, SHAO Y Q, et al. Lithium iron phosphate enhances the performance of high-areal-capacity sulfur composite cathodes[J]. ACS Applied Materials & Interfaces, 2023, 15(15): 19011-19020. |
71 | YU Z, HUANG X, ZHENG M, et al. Self-assembled macrocyclic copper complex enables homogeneous catalysis for high-loading lithium-sulfur batteries[J]. Advanced materials (Deerfield Beach, Fla.), 2023, doi: 10.1002/adma.202300861: e2300861-e2300861. |
72 | WANG S, LU B, CHENG D, et al. Structural transformation in a sulfurized polymer cathode to enable long-life rechargeable lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2023, doi: 10.1021/jacs.3c00628. |
73 | SHI C, SONG J J, ZHANG Y, et al. Revealing the mechanisms of lithium-ion transport and conduction in composite solid polymer electrolytes[J]. Cell Reports Physical Science, 2023, 4(3): doi:10.1016/j.xcrp.2023.101321. |
74 | QIU C D, HU Y C, CAO K W, et al. Engineering peculiar cathode electrolyte interphase toward sustainable and high-rate Li-S batteries[J]. Advanced Energy Materials, 2023, 13(19): doi: 10. 1002/aenm.202300229. |
75 | GENG C N, QU W J, HAN Z Y, et al. Superhigh coulombic efficiency lithium-sulfur batteries enabled by in situ coating lithium sulfide with polymerizable electrolyte additive[J]. Advanced Energy Materials, 2023, 13(15): doi: 10.1002/aenm.202204246. |
76 | PENG J, ZHENG X, WU Y, et al. Li2S-based composite cathode with in situ-generated Li3PS4 electrolyte on Li2S for advanced all-solid-state lithium-sulfur batteries[J]. ACS applied materials & interfaces, 2023, doi: 10.1021/acsami.3c02732. |
77 | PENG X, CHEN X, TANG C, et al. Self-healing binder for high-voltage batteries[J]. ACS applied materials & interfaces, 2023, doi: 10.1021/acsami.3c01962. |
78 | CHEN Z Z, LU M J, QIAN Y, et al. Ultra-low dosage lignin binder for practical lithium-sulfur batteries[J]. Advanced Energy Materials, 2023, 13(17): doi: 10.1002/aenm. 202370066. |
79 | RYU M, HONG Y K, LEE S Y, et al. Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication[J]. Nature Communications, 2023, 14: 1316. |
80 | WANG H A, LI J B, MIAO Z Y, et al. Hierarchical electrode architecture enabling ultrahigh-capacity LiFePO4 cathodes with low tortuosity[J]. ACS Applied Materials & Interfaces, 2023, 15(22): 26824-26833. |
81 | KOMODA Y, ISHIBASHI K, KURATANI K, et al. Effects of drying rate and slurry microstructure on the formation process of LiB cathode and electrochemical properties[J]. Journal of Power Sources, 2023, 568: doi: 10.1016/j.jpowsour.2023.232983. |
82 | APACHITEI G, HIDALGO M, DOGARU D, et al. Optimisation of industrially relevant electrode formulations for LFP cathodes in lithium ion cells[J]. Batteries, 2023, 9(4): 192. |
83 | MENG Q H, FAN M, CHANG X, et al. A functional prelithiation separator promises sustainable high-energy lithium-ion batteries[J]. Advanced Energy Materials, 2023, 13(19): doi: 10.1002/aenm. 202300507. |
84 | XIANG Y X, TAO M M, CHEN X X, et al. Gas induced formation of inactive Li in rechargeable lithium metal batteries[J]. Nature Communications, 2023, 14: 177. |
85 | SADD M, XIONG S Z, BOWEN J R, et al. Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy[J]. Nature Communications, 2023, 14: 854. |
86 | BRADBURY R, DEWALD G F, KRAFT M A, et al. Visualizing reaction fronts and transport limitations in solid-state Li-S batteries via operando neutron imaging[J]. Advanced Energy Materials, 2023, 13(17): doi: 10.1002/aenm.202203426. |
87 | AI Q, CHEN Z Y, ZHANG B Y, et al. High-spatial-resolution quantitative chemomechanical mapping of organic composite cathodes for sulfide-based solid-state batteries[J]. ACS Energy Letters, 2023, 8(2): 1107-1113. |
88 | LIANG Z T, XIANG Y X, WANG K J, et al. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy[J]. Nature Communications, 2023, 14: 259. |
89 | LEE T, QI J, GADRE C A, et al. Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3[J]. Nature Communications, 2023, 14: 1940. |
90 | MENG X, LIU Y, MA Y, et al. Diagnosing and correcting the failure of the solid-state polymer electrolyte for enhancing solid-state lithium-sulfur batteries[J]. Advanced Materials, 2023: doi: 10.1002/adma.202212039. |
91 | BRIESKE D M, WARNECKE A, SAUER D U. Modeling the volumetric expansion of the lithium-sulfur battery considering charge and discharge profiles[J]. Energy Storage Materials, 2023, 55: 289-300. |
92 | DING Y H, ZHENG Y D, LI S Y, et al. A review of battery thermal management methods for electric vehicles[J]. Journal of Electrochemical Energy Conversion and Storage, 2023, 20(2): 021002. |
93 | LIU T J, KUM L W, SINGH D K, et al. Thermal, electrical, and environmental safeties of sulfide electrolyte-based all-solid-state Li-ion batteries[J]. ACS Omega, 2023, 8(13): 12411-12417. |
94 | GU Z, MA J, ZHU F, et al. Atomic-scale study clarifying the role of space-charge layers in a li-ion-conducting solid electrolyte[J]. Nature Communications, 2023, 14:1632. |
95 | WOODAHL C, JAMNUCH S, AMADO A, et al. Probing lithium mobility at a solid electrolyte surface[J]. Nature Materials, 2023: 1-5. |
96 | ECKHARDT J K, FUCHS T, BURKHARDT S, et al. Guidelines for impedance analysis of parent metal anodes in solid-state batteries and the role of current constriction at interface voids, heterogeneities, and SEI[J]. Advanced Materials Interfaces, 2023, 10(8): doi: 10. 1002/admi.202202354. |
97 | YAO N, YU L G, FU Z H, et al. Probing the origin of viscosity of liquid electrolytes for lithium batteries[J]. Angewandte Chemie, 2023: doi: 10.1002/anie.202305331: e202305331-e202305331. |
98 | CAI Z D, PAN T L, JIANG H Y, et al. State-of-charge estimation of lithium-ion batteries based on ultrasonic detection[J]. Journal of Energy Storage, 2023, 65: doi: 10.1016/j.est.2023.107264. |
99 | ZHANG R Z, STRAUSS F, JIANG L, et al. Transition-metal interdiffusion and solid electrolyte poisoning in all-solid-state batteries revealed by cryo-TEM[J]. Chemical Communications, 2023, 59(31): 4600-4603. |
100 | VALIYAVEETTIL-SOBHANRAJ S, CID R, THOMPSON T, et al. High-temperature thermal reactivity and interface evolution of the NMC-LATP-carbon composite cathode[J]. ACS Applied Materials & Interfaces, 2023, 15(10): 13689-13699. |
[1] | 郝增辉, 刘训良, 孟缘, 孟楠, 温治. 电极界面微观结构对固态锂离子电池性能的影响[J]. 储能科学与技术, 2023, 12(7): 2095-2104. |
[2] | 武明虎, 岳程鹏, 张凡, 李俊晓, 黄伟, 胡胜, 唐靓. 多尺度分解下GRU-MLR组合的锂电池剩余使用寿命预测方法[J]. 储能科学与技术, 2023, 12(7): 2220-2228. |
[3] | 张佳怡, 翁素婷, 王兆翔, 王雪锋. 石墨负极界面SEI膜与锂离子电池热失控[J]. 储能科学与技术, 2023, 12(7): 2105-2118. |
[4] | 王怡, 陈学兵, 王愿习, 郑杰允, 刘啸嵩, 李泓. 储能锂离子电池多层级失效机理及分析技术综述[J]. 储能科学与技术, 2023, 12(7): 2079-2094. |
[5] | 张贵萍, 闫筱炎, 王兵, 姚培新, 胡昌杰, 刘奕哲, 李纾黎, 薛建军. 长寿命循环的磷酸铁锂电池及材料、工艺[J]. 储能科学与技术, 2023, 12(7): 2134-2140. |
[6] | 杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J]. 储能科学与技术, 2023, 12(7): 2166-2184. |
[7] | 马敬轩, 宋宇航, 石爽, 吕娜伟, 尹康涌, 王桂荣, 杜开源, 金阳. 基于气压信号突变探测的液冷型磷酸铁锂电池模组热失控预警研究[J]. 储能科学与技术, 2023, 12(7): 2246-2255. |
[8] | 禹永帅, 刘永峰, 裴普成, 张璐, 姚圣卓. 阴极相对湿度对PEMFC电解质水含量及性能的影响[J]. 储能科学与技术, 2023, 12(6): 1755-1764. |
[9] | 黄凌锋, 韩东梅, 黄盛, 王拴紧, 肖敏, 孟跃中. 含有机硼的锂离子电池聚合物电解质的研究进展[J]. 储能科学与技术, 2023, 12(6): 1815-1830. |
[10] | 刘宇龄, 孟锦豪, 彭乔, 刘天琪, 王扬, 蔡永翔. 基于NSGA-II遗传算法的锂电池均衡指标优化[J]. 储能科学与技术, 2023, 12(6): 1946-1956. |
[11] | 时文超, 刘宇, 张博冕, 李琪, 韩春华, 麦立强. 电解液添加剂稳定水系电池锌负极界面的研究进展[J]. 储能科学与技术, 2023, 12(5): 1589-1603. |
[12] | 王海, 边煜华, 王佳东, 刘朝阳, 张杰, 姚健, 高宣雯, 刘朝孟, 骆文彬. 退役锂离子电池锂资源回收工艺[J]. 储能科学与技术, 2023, 12(5): 1453-1460. |
[13] | 李金涛, 牟粤, 王静, 邱景义, 明海. 高镍正极材料的稳定改性方法研究综述[J]. 储能科学与技术, 2023, 12(5): 1636-1654. |
[14] | 屈康康, 刘亚华, 洪叠, 沈兆曦, 韩效钊, 张旭. 中性水系有机液流电池正极电解质的研究进展[J]. 储能科学与技术, 2023, 12(5): 1570-1588. |
[15] | 雷蕾, 高鹏, 冯娜娜, 蔡坤鹏, 张海, 张扬. 锆酸镧锂固态电解质合成过程多因素影响[J]. 储能科学与技术, 2023, 12(5): 1625-1635. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||