储能科学与技术 ›› 2023, Vol. 12 ›› Issue (5): 1636-1654.doi: 10.19799/j.cnki.2095-4239.2023.0052

• 储能材料与器件 • 上一篇    下一篇

高镍正极材料的稳定改性方法研究综述

李金涛1(), 牟粤2,3, 王静1(), 邱景义3, 明海3()   

  1. 1.燕山大学环境与化学工程学院,河北 秦皇岛 066004
    2.北京航空航天大学,北京 100191
    3.军事科学院防化研究院,北京 100191
  • 收稿日期:2023-02-06 修回日期:2023-03-01 出版日期:2023-05-05 发布日期:2023-05-29
  • 通讯作者: 王静,明海 E-mail:leejt99@163.com;jwang6027@ysu.edu.cn;hai.mingenergy@ hotmail.com
  • 作者简介:李金涛(1999—),男,硕士研究生,研究方向为锂电池正极材料电化学,E-mail:leejt99@163.com
  • 基金资助:
    河北省教育厅留学归国人员科研基金(C20210503);河北省科学技术厅(226Z4404G);河北省教育厅杰出青年学者基金(BJ2021042);国家自然科学青年基金项目(21703285)

Investigation of the structural evolution and interface behavior in cathode materials for Li-ion batteries

Jintao LI1(), Yue MU2,3, Jing WANG1(), Jingyi QIU3, Hai MING3()   

  1. 1.School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China
    2.Beihang University, Beijing 100191, China
    3.Research Institute of Chemical Defence, AMS, Beijing 100191, China
  • Received:2023-02-06 Revised:2023-03-01 Online:2023-05-05 Published:2023-05-29
  • Contact: Jing WANG, Hai MING E-mail:leejt99@163.com;jwang6027@ysu.edu.cn;hai.mingenergy@ hotmail.com

摘要:

高镍正极材料拥有容量高、稳定性好、成本较低以及环境友好等优点,是未来开发高比容量锂离子电池的关键正极材料之一。同时,为获得更高可逆容量以进一步提升电池的比容量,增加材料本体中的Ni元素含量是常用、也被广泛认可的技术手段。不过,随着材料中镍的提升,也带来了诸多问题,诸如阳离子混排程度上升,表-界面副反应活性增多,热稳定性下降,晶体容易出现裂纹并迅速蔓延扩散,以及在空气中容易生成残余锂化合物等。在这些负面诱因的共同作用下,高镍正极材料面临着使用环境要求较高、循环过程中易发生结构破坏以及造成的安全性等问题,阻碍了其进一步推广应用。基于上述考虑,本文梳理了近些年用于稳定高镍正极材料的改性方法,综合分析了各方法的特性及研究现状,经分析认为,后续在锂离子电池高镍正极研发改性的过程中,应从原有改性策略出发,进行更小尺度、更精细化地结构优化,针对电芯的不同应用场景进行材料微观结构的定制化改性,全面实现高镍正极材料的各项性能提升。

关键词: 正极材料, 高镍正极材料, 稳定化改性, 锂离子电池, 电化学

Abstract:

As a key cathode material for future high-specific capacity lithium-ion batteries, nickel-rich cathode materials have advantages of high capacity, strong stability, low cost, and environmental friendliness. Meanwhile, increasing the elemental Ni content in the materials contributes to high reversible capacity and further enhances the specific energy of the battery. However, increased nickel content in the material suffers many problems, such as increased cation mixing, which increase surface-interface side reactions, decrease thermal stability, crack crystals, and spread rapidly, as well as considerably elevate residual lithium compounds on both surface and interior of the cathode. Owing to these negative impacts, high-nickel cathode materials often suffer failure and safety problems while charging-discharging, hindering their practical applications. Based on the above considerations, we comprehensively compared and analyzed the modification methods used to stabilize and enhance the high-nickel cathode materials for Li-ion batteries in recent years. As a result, we concluded that small-scale refined structure modifications should be conducted based on the original modification strategy for developing high-nickel positive electrodes of lithium-ion batteries. Besides, the microstructure of the nickel-rich positive electrode materials should be optimized depending on their applications to improve their performance.

Key words: cathode materials, Ni-rich ternary material, stabilization, lithium-ion battery, electrochemistry

中图分类号: