储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2079-2094.doi: 10.19799/j.cnki.2095-4239.2023.0295

• 储能锂离子电池系统关键技术专刊 • 上一篇    下一篇

储能锂离子电池多层级失效机理及分析技术综述

王怡1(), 陈学兵1, 王愿习1, 郑杰允1,2, 刘啸嵩1,3, 李泓1,2()   

  1. 1.天目湖先进储能技术研究院有限公司,江苏 溧阳 213300
    2.中国科学院物理研究所,北京 100190
    3.中国科学技术大学,安徽 合肥 230041
  • 收稿日期:2023-05-04 修回日期:2023-06-13 出版日期:2023-07-05 发布日期:2023-07-25
  • 通讯作者: 李泓 E-mail:wangyi@aesit.com.cn;hli@iphy.ac.cn
  • 作者简介:王怡(1992—),女,博士,研究方向为电池失效分析与逆向分析,E-mail:wangyi@aesit.com.cn
  • 基金资助:
    国家重点研发计划(2022YFB2502200)

Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries

Yi WANG1(), Xuebing CHEN1, Yuanxi WANG1, Jieyun ZHENG1,2, Xiaosong LIU1,3, Hong LI1,2()   

  1. 1.Tianmu Lake Institute of Advanced Energy Storage Technologies Co. Ltd. , Liyang 213300, Jiangsu, China
    2.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    3.University of Science and Technology of China, Hefei 230041, Anhui, China
  • Received:2023-05-04 Revised:2023-06-13 Online:2023-07-05 Published:2023-07-25
  • Contact: Hong LI E-mail:wangyi@aesit.com.cn;hli@iphy.ac.cn

摘要:

锂离子电池电化学和安全性能与其材料、极片和电池各层级的特性密切相关,揭示储能锂离子电池多层级的失效机理,可为储能锂离子电池的设计优化、使用管控提供指导。本文以广泛应用的磷酸铁锂储能电池为例,从材料、极片、电池层级出发,分别综述了其常见的失效形式以及对应的失效机理与表征分析技术。在本文中多层级的失效包括正负极材料的结构、组成和表界面失效以及电解液和隔膜的失效;极片的析锂、孔隙率、剥离和非均匀极化失效;电池的产气和热失控失效。最后对未来储能失效分析技术进行展望,包含先进表征技术应用、标准化失效分析流程等方面,希望能为储能锂电池失效分析技术的发展起到积极的推动作用。

关键词: 储能, 锂电池, 多层级, 失效分析

Abstract:

The electrochemical and safety performance of lithium-ion batteries is closely related to the characteristics of their materials, electrodes, and cell levels. Revealing the multilevel failure mechanism of energy storage lithium-ion batteries can guide their design optimization and use control. Therefore, this study considers the widely used lithium-iron phosphate energy storage battery as an example to review common failure forms, failure mechanisms, and characterization analysis techniques from the perspectives of materials, electrodes, and cells. Multilevel failure in this article includes the structure, composition, and interface failure of anode and cathode materials; the failure of electrolytes and separators; the failure of lithium plating, porosity, exfoliation, and nonuniform polarization of electrodes; and the gas production and thermal runaway of cells. Finally, the future energy storage failure analysis technology is presented, including the application of advanced characterization technology and standardized failure analysis process to contribute to promoting the development of failure analysis technology for energy storage lithium-ion batteries.

Key words: energy storage, lithium-ion battery, multi-level, failure analysis

中图分类号: