储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2059-2078.doi: 10.19799/j.cnki.2095-4239.2023.0462

• 储能锂离子电池系统关键技术专刊 • 上一篇    下一篇

复合金属锂负极的定量模型新进展

李凌萱1,2,3(), 王子轩1,2,3, 赵辰孜3(), 张睿4, 卢洋3, 黄佳琦1,2, 陈爱兵5, 张强3   

  1. 1.北京理工大学材料学院,北京 100081
    2.北京理工大学前沿交叉科学研究院,北京 100081
    3.清华大学化学工程系,绿色化学反应工程与技术北京市重点实验室,北京 100084
    4.北京怀柔实验室,北京 101400
    5.河北科技大学化学与制药工程学院,河北 石家庄 050018
  • 收稿日期:2023-07-03 修回日期:2023-07-08 出版日期:2023-07-05 发布日期:2023-07-25
  • 通讯作者: 赵辰孜 E-mail:lingxuan2000@bit.edu.cn;zcz@mail.tsinghua.edu.cn
  • 作者简介:李凌萱(2000—),女,硕士研究生,研究方向为金属锂电池,E-mail:lingxuan2000@bit.edu.cn
  • 基金资助:
    国家自然科学基金(22108151);国家重点研发计划(2021YFB2500300);华为公司战略研究院项目,清华大学-丰田联合研究基金专项,河北省省级科技计划资助(22344402D)

A review of numerical models for composite lithium metal anodes

Lingxuan LI1,2,3(), Zixuan WANG1,2,3, Chenzi ZHAO3(), Rui ZHANG4, Yang LU3, Jiaqi HUANG1,2, Aibing CHEN5, Qiang ZHANG3   

  1. 1.School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
    2.Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
    3.Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
    4.Beijing Huairou Laboratory, Beijing 101400, China
    5.College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
  • Received:2023-07-03 Revised:2023-07-08 Online:2023-07-05 Published:2023-07-25
  • Contact: Chenzi ZHAO E-mail:lingxuan2000@bit.edu.cn;zcz@mail.tsinghua.edu.cn

摘要:

锂金属具有极高的比容量和极低的氧化还原电极电势,是二次电池领域最核心的能源材料之一。然而,金属锂负极面临着体积膨胀和不均匀锂沉积等挑战。在金属锂负极中引入三维骨架构建复合锂负极,是缓解体积膨胀、调控锂沉积的有效方法。复合金属锂负极成分和结构复杂,影响电化学反应的因素强耦合。随着物理化学模型进步和计算水平的大规模提升,采用数值模型分析可以有效研究复合锂负极中的物理化学机制。本文首先总结了复合金属锂负极中发生的核心过程机理,回顾了物理化学模型的发展进程。随后介绍了复合锂负极表面电场、离子场等电化学传质过程的定量模型,综述了基于相场模型或有限元模型对锂沉积形貌动态演变机制分析和调控策略的进展,最后从力-电化学场的角度分析了复合锂负极在循环过程中的结构稳定性。这些定量模型工作揭示了锂负极的电化学原理,推动了复合锂负极的高效筛选和优化设计。

关键词: 锂金属电池, 复合金属锂负极, 理论模拟, 传质过程, 形貌演变

Abstract:

Lithium metal has extremely high specific capacity and very low redox electrode potential, which is one of the key energy materials in the field of secondary batteries. However, the metal lithium anode faces challenges such as volume expansion and uneven lithium deposition. Introducing a three-dimensional framework into the lithium metal anode to construct a composite lithium anode is an effective method to mitigate volume expansion and regulate lithium deposition. However, the composition and structure of composite lithium anode are very complex, the influencing factors of electrochemical reactions are strongly coupled with each other. With the advancements of physical and chemical models and significant improvements in computational capabilities, numerical modeling analysis has become a valuable tool to investigate the physical chemistry principles within composite lithium anodes. Firstly, the main process mechanisms of composite lithium metal anode and the development process of physicochemical models are summarized. Then quantitative models of the electrochemical mass transfer processes are introduced, including surface electric fields and ion fields in the composite lithium anode. And the progresses made in analyzing and controlling the dynamic evolution of lithium deposition morphology using phase field models or finite element models are overviewed. Finally, the structural stability of the composite lithium metal anode during the cycling process is analyzed from the perspective of the mechano-electrochemistry. These quantitative modeling efforts reveal the electrochemical principles of lithium anodes and drive the efficient screening and optimization design of composite lithium anodes.

Key words: lithium metal batteries, composite lithium metal anodes, theoretical simulation, mass transfer, morphology evolution

中图分类号: