储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2045-2058.doi: 10.19799/j.cnki.2095-4239.2023.0248
李淼1(), 于永利1, 吴剑扬2, 雷敏1, 周恒辉2()
收稿日期:
2023-04-20
修回日期:
2023-05-17
出版日期:
2023-07-05
发布日期:
2023-07-25
通讯作者:
周恒辉
E-mail:limiao@pulead.com.cn;hhzhou@pku.edu.cn
作者简介:
李淼(1985—),女,博士,副研究员,研究方向为高压实密度磷酸铁锂正极材料改性,E-mail:limiao@pulead.com.cn;
基金资助:
Miao LI1(), Yongli YU1, Jianyang WU2, Min LEI1, Henghui ZHOU2()
Received:
2023-04-20
Revised:
2023-05-17
Online:
2023-07-05
Published:
2023-07-25
Contact:
Henghui ZHOU
E-mail:limiao@pulead.com.cn;hhzhou@pku.edu.cn
摘要:
磷酸铁锂(LiFePO4)是锂离子动力和储能电池中应用最广泛的正极材料,为了满足市场对锂离子电池更高能量密度的要求,必须开发具有更高能量密度的LiFePO4材料。根据能量密度的定义,本文从LiFePO4的电压平台、粉体压实密度和质量比容量三个方面展开论述,通过电化学和材料学方面的机理分析,指出提高粉体压实密度和质量比容量是具有潜力的改进方向。结合研发经验、市场调研和国内外的研究成果,在提高材料粉体压实密度方面,本文总结了原料种类选择、烧结制度改善、大小颗粒级配这三类最有效的方法,具体介绍了制备LiFePO4的磷酸铁路线,烧结制度伴随的杂质问题,以及大小颗粒级配的流程差异;在提高质量比容量方面,从LiFePO4的本征特性出发,介绍了纳米化、碳包覆、元素掺杂、缺陷控制以及晶体择优取向五种策略,指出纳米化、碳包覆、元素掺杂是目前最有效的提高质量比容量的改性方法。上述方法都已经应用于市场上的LiFePO4产品之中,其提高能量密度的有效性得到了国内多家电池厂的认证。目前LiFePO4正极材料的能量密度还未被完全开发,仍需要继续开展材料改性的研究和生产工艺的优化。
中图分类号:
李淼, 于永利, 吴剑扬, 雷敏, 周恒辉. 高能量密度磷酸铁锂正极设计[J]. 储能科学与技术, 2023, 12(7): 2045-2058.
Miao LI, Yongli YU, Jianyang WU, Min LEI, Henghui ZHOU. Design of high-energy-density LiFePO4 cathode materials[J]. Energy Storage Science and Technology, 2023, 12(7): 2045-2058.
1 | 胡国荣, 杜柯, 彭忠东. 锂离子电池正极材料: 原理、性能与生产工艺[M]. 北京: 化学工业出版社, 2017. |
HU G R, DU K, PENG Z D. Cathode materials for lithium ion batteries[M]. Beijing: Chemical Industry Press, 2017. | |
2 | 徐艳辉, 李德成, 胡博. 锂离子电池活性电极材料[M]. 北京: 化学工业出版社, 2017. |
XU Y H, LI D C, HU B. Active electrode materials for lithium ion batteries[M]. Beijing: Chemical Industry Press, 2017. | |
3 | LIU X S, WANG Y J, BARBIELLINI B, et al. Why LiFePO4 is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation[J]. Physical Chemistry Chemical Physics, 2015, 17(39): 26369-26377. |
4 | VAN DER VEN A, BHATTACHARYA J, BELAK A A. Understanding Li diffusion in Li-intercalation compounds[J]. Accounts of Chemical Research, 2013, 46(5): 1216-1225. |
5 | DOMPABLO A D, ARMAND M, TARASCON J M, et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni)[J]. Electrochemistry Communications, 2006, 8(8): 1292-1298. |
6 | GUTIERREZ A, BENEDEK N A, MANTHIRAM A. Crystal-chemical guide for understanding redox energy variations of M2+/3+ couples in polyanion cathodes for lithium-ion batteries[J]. Chemistry of Materials, 2013, 25(20): 4010-4016. |
7 | FUJII H, HŌKABE T, KAMIGAICHI T, et al. Magnetic properties of Fe2P single crystal[J]. Journal of the Physical Society of Japan, 1977, 43(1): 41-46. |
8 | ZHAO B, JIANG Y, ZHANG H, et al. Morphology and electrical properties of carbon coated LiFePO4 cathode materials[J]. Journal of Power Sources, 2009, 189(1): 462-466. |
9 | TIAN R Y, LIU H Q, JIANG Y, et al. Drastically enhanced high-rate performance of carbon-coated LiFePO4 nanorods using a green chemical vapor deposition (CVD) method for lithium ion battery: A selective carbon coating process[J]. ACS Applied Materials & Interfaces, 2015, 7(21): 11377-11386. |
10 | SALAH A Ait, MAUGER A, JULIEN C M, et al. Nano-sized impurity phases in relation to the mode of preparation of LiFePO4[J]. Materials Science and Engineering: B, 2006, 129(1/2/3): 232-244. |
11 | RHO Y H, NAZAR L F, PERRY L, et al. Surface chemistry of LiFePO4 studied by Mössbauer and X-ray photoelectron spectroscopy and its effect on electrochemical properties[J]. Journal of the Electrochemical Society, 2007, 154(4): A283. |
12 | HU C, YI H, FANG H, et al. Suppressing Li3PO4 impurity formation in LiFePO4/Fe2P by a nonstoichiometry synthesis and its effect on electrochemical properties[J]. Materials Letters, 2011, 65(9): 1323-1326. |
13 | WU S H, SHIU J J, LIN J Y. Effects of Fe2P and Li3PO4 additives on the cycling performance of LiFePO4/C composite cathode materials[J]. Journal of Power Sources, 2011, 196(16): 6676-6681. |
14 | YIN Y, GAO M, PAN H, et al. High-rate capability of LiFePO4 cathode materials containing Fe2P and trace carbon[J]. Journal of Power Sources, 2012, 199: 256-262. |
15 | ZHANG L, TANG Y, LIU Z, et al. Synthesis of Fe2P coated LiFePO4 nanorods with enhanced Li-storage performance[J]. Journal of Alloys and Compounds, 2015, 627: 132-135. |
16 | DHINDSA K S, KUMAR A, NAZRI G A, et al. Enhanced electrochemical performance of LiFePO4/C nanocomposites due to in situ formation of Fe2P impurities[J]. Journal of Solid State Electrochemistry, 2016, 20(8): 2275-2282. |
17 | HE L H, XU S M, ZHAO Z W. Suppressing the formation of Fe2P: Thermodynamic study on the phase diagram and phase transformation for LiFePO4 synthesis[J]. Energy, 2017, 134: 962-967. |
18 | LIU Y L, LIU J, WANG J J, et al. Formation of size-dependent and conductive phase on lithium iron phosphate during carbon coating[J]. Nature Communications, 2018, 9: 929. |
19 | MALIK R, ABDELLAHI A, CEDER G. A critical review of the Li insertion mechanisms in LiFePO4 electrodes[J]. Journal of the Electrochemical Society, 2013, 160(5): A3179-A3197. |
20 | SUN C W, RAJASEKHARA S, GOODENOUGH J B, et al. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode[J]. Journal of the American Chemical Society, 2011, 133(7): 2132-2135. |
21 | YUAN L X, WANG Z H, ZHANG W X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(2): 269-284. |
22 | WANG Y G, HE P, ZHOU H S. Olivine LiFePO4: Development and future[J]. Energy & Environmental Science, 2011, 4(3): 805-817. |
23 | ZHOU X F, WANG F, ZHU Y M, et al. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries[J]. Journal of Materials Chemistry, 2011, 21(10): 3353-3358. |
24 | MAROM R, AMALRAJ S F, LEIFER N, et al. A review of advanced and practical lithium battery materials[J]. Journal of Materials Chemistry, 2011, 21(27): 9938-9954. |
25 | SU L W, JING Y, ZHOU Z. Li ion battery materials with core-shell nanostructures[J]. Nanoscale, 2011, 3(10): 3967-3983. |
26 | ZHANG Weijun. Structure and performance of LiFePO4 cathode materials: A review[J]. Journal of Power Sources, 2011, 196(6): 2962-2970. |
27 | YI T F, LI X Y, LIU H P, et al. Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery[J]. Ionics, 2012, 18(6): 529-539. |
28 | WANG J J, SUN X L. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(1): 5163-5185. |
29 | ZHANG Y, HUO Q Y, DU P P, et al. Advances in new cathode material LiFePO4 for lithium-ion batteries[J]. Synthetic Metals, 2012, 162(13/14): 1315-1326. |
30 | HU B L H, WU F Y, LIN C T, et al. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity[J]. Nature Communications, 2013, 4: 1687. |
31 | BI Z Y, ZHANG X D, HE W, et al. Recent advances in LiFePO4 nanoparticles with different morphology for high-performance lithium-ion batteries[J]. RSC Advances, 2013, 3(43): 19744-19751. |
32 | KUCINSKIS G, BAJARS G, KLEPERIS J. Graphene in lithium ion battery cathode materials: A review[J]. Journal of Power Sources, 2013, 240: 66-79. |
33 | WANG J J, SUN X L. Olivine LiFePO4: The remaining challenges for future energy storage[J]. Energy & Environmental Science, 2015, 8(4): 1110-1138. |
34 | PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery-A low-temperature aging study[J]. Journal of Power Sources, 2015, 275: 799-807. |
35 | ALI EFTEKHARI. LiFePO4/C nanocomposites for lithium-ion batteries[J]. Journal of Power Sources, 2017, 343: 395-411. |
36 | WANG X F, FENG Z J, HUANG J T. Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries[J]. Carbon, 2018, 127: 149-157. |
37 | AN Q, SUN X H, GUO J Z, et al. Review-Key strategies to increase the rate capacity of cathode materials for high power lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(14): 140528. |
38 | CHEN S P, LV D, CHEN J, et al. Review on defects and modification methods of LiFePO4 cathode material for lithium-ion batteries[J]. Energy & Fuels, 2022, 36(3): 1232-1251. |
39 | ZAGHIB K, GUERFI A, HOVINGTON P, et al. Review and analysis of nanostructured olivine-based lithium recheargeable batteries: Status and trends[J]. Journal of Power Sources, 2013, 232: 357-369. |
40 | LEE K T, CHO J. Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries[J]. Nano Today, 2011, 6(1): 28-41. |
41 | YAO H R, YIN Y X, GUO Y G. Size effects in lithium ion batteries[J]. Chinese Physics B, 2016, 25(1): 018203. |
42 | LIU H, TANG D. The low cost synthesis of nanoparticles LiFePO4/C composite for lithium rechargeable batteries[J]. Solid State Ionics, 2008, 179(33/34): 1897-1901. |
43 | KONAROVA M, TANIGUCHI I. Physical and electrochemical properties of LiFePO4 nanoparticles synthesized by a combination of spray pyrolysis with wet ball-milling[J]. Journal of Power Sources, 2009, 194(2): 1029-1035. |
44 | WASER O, R BÜCHEL, HINTENNACH A, et a. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries[J]. Journal of Aerosol Science, 2011, 42(10): 657-667. |
45 | WANG F Q, CHEN J, WU M H, et al. Propylene oxide-assisted fast Sol-gel synthesis of mesoporous and nano-structured LiFePO4/C cathode materials[J]. Ionics, 2013, 19(3): 451-460. |
46 | QIU Y J, GENG Y H, YU J, et al. High-capacity cathode for lithium-ion battery from LiFePO4/(C + Fe2P) composite nanofibers by electrospinning[J]. Journal of Materials Science, 2014, 49(2): 504-509. |
47 | WU Y F, LIU Y N, GUO S W, et al. Hierarchical carbon-coated LiFePO4 nano-grain microspheres with high electrochemical performance as cathode for lithium ion batteries[J]. Journal of Power Sources, 2014, 256: 336-344. |
48 | LIU Z L, ZHANG X H, HONG L. Preparation and electrochemical properties of spherical LiFePO4 and LiFe0.9Mg0.1PO4 cathode materials for lithium rechargeable batteries[J]. Journal of Applied Electrochemistry, 2009, 39(12): 2433-2438. |
49 | SONG J J, ZHANG Y, SHAO G J. Comparing the electrochemical performance of LiFePO4/C modified by Mg doping and MgO coating[J]. Journal of Nanomaterials, 2013, 2013: 1-8. |
50 | FANG H, LIANG G, ZHAO L, et al. Synthesis and characterization of Ti doped lithium iron phosphate[J]. ECS Transactions, 2013, 45(29): 11-21. |
51 | CUI Y, WANG M, GUO R S. High rate performance of LiFePO4 cathode materials co-doped with C and Ti4+ by microwave synthesis[J]. Bulletin of Materials Science, 2009, 32(6): 579-582. |
52 | HUANG W Q, CHENG Q, QIN X. Effect of Li excess content and Ti dopants on electrochemical properties of LiFePO4 prepared by thermal reduction method[J]. Russian Journal of Electrochemistry, 2010, 46(3): 359-362. |
53 | PIETRZAK T K, WASIUCIONEK M, GORZKOWSKA I, et al. Novel vanadium-doped olivine-like nanomaterials with high electronic conductivity[J]. Solid State Ionics, 2013, 251: 40-46. |
54 | HARRISON K L, BRIDGES C A, PARANTHAMAN M P, et al. Temperature dependence of aliovalent-vanadium doping in LiFePO4 cathodes[J]. Chemistry of Materials, 2013, 25(5): 768-781. |
55 | WANG G X, BEWLAY S, YAO J, et al. Characterization of LiMxFe1– xPO4 (M=Mg, Zr, Ti) cathode materials prepared by the Sol-gel method[J]. Electrochemical and Solid-State Letters, 2004, 7(12): A503. |
56 | HU Y Q, DOEFF M M, KOSTECKI R, et al. Electrochemical performance of Sol-gel synthesized LiFePO4 in lithium batteries[J]. Journal of the Electrochemical Society, 2004, 151(8): A1279. |
57 | ABBATE M, LALA S M, MONTORO L A, et al. Ti-, Al-, and Cu-doping induced gap states in LiFePO4[J]. Electrochemical and Solid-State Letters, 2005, 8(6): A288. |
58 | XU Y, YU J G, PENG S, et al. Preparation and electrochemical properties of homogeneous carbon-coated LiFe0.9Mn0.1PO4 as cathode material for lithium-ion batteries[J]. Journal of the Brazilian Chemical Society, 2012, 23(7): 1298-1304. |
59 | TRINH D V, NGUYEN M T T, DANG H T M, et al. Hydrothermally synthesized nanostructured LiMnxFe1- xPO4 (x=0-0.3) cathode materials with enhanced properties for lithium-ion batteries[J]. Scientific Reports, 2021, 11: 12280. |
60 | TRIWIBOWO J, PRIYONO S, PURAWIARDI R I, et al. Electrochemical performance of LiFe(1- x)MnxPO4 (x=0, 0.10, 0.15, 0.2) synthesized by solid state process as cathode material for Li-ion battery[C]//AIP Conference Proceedings. Jatinangor, Indonesia. AIP Publishing LLC, 2016. |
61 | LIU L, CAO Z, CUI Y, et al. Nanocomposites LiMnxFe1- xPO4/C synthesized via freeze drying assisted Sol-gel routine and their magnetic and electrochemical properties[J]. Journal of Alloys and Compounds, 2019, 779: 339-346. |
62 | WANG L, LI Y, DAI Y, et al. Effect of Mn content on electrochemical performance and energy density of LiFe1- xMnxPO4/C[J]. Vacuum, 2022, 196: 110730. |
63 | TU J G, WU K, TANG H, et al. Mg-Ti co-doping behavior of porous LiFePO4 microspheres for high-rate lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(32): 17021-17028. |
64 | LONG Y F, SU J, CUI X R, et al. Enhanced rate performance of LiFePO4/C by co-doping titanium and vanadium[J]. Solid State Sciences, 2015, 48: 104-111. |
65 | YUAN H, WANG X, WU Q, et al. Effects of Ni and Mn doping on physicochemical and electrochemical performances of LiFePO4/C[J]. Journal of Alloys and Compounds, 2016, 675: 187-194. |
66 | HUANG Y, XU Y, YANG X. Enhanced electrochemical performances of LiFePO4/C by co-doping with magnesium and fluorine[J]. Electrochimica Acta, 2013, 113: 156-163. |
67 | LV Y J, HUANG B, TAN J X, et al. Enhanced low temperature electrochemical performances of LiFePO4/C by V3+ and F- co-doping[J]. Materials Letters, 2018, 229: 349-352. |
68 | SHU H, WANG X, WEN W, et al. Effective enhancement of electrochemical properties for LiFePO4/C cathode materials by Na and Ti co-doping[J]. Electrochimica Acta, 2013, 89: 479-487. |
69 | HU C W, LEE C H, WU P J. Study on the dynamics of a vanadium doped LiFePO4 lithium-ion battery using quasi-elastic neutron scattering technique[J]. Journal of the Chinese Chemical Society, 2021, 68(3): 507-511. |
70 | LEMOS V, GUERINI S, MENDESFILHO J, et al. A new insight into the LiFePO4 delithiation process[J]. Solid State Ionics, 2006, 177(11/12): 1021-1025. |
71 | MEETHONG N, HUANG H Y S, CARTER W C, et al. Size-dependent lithium miscibility gap in nanoscale Li1– xFePO4[J]. Electrochemical and Solid-State Letters, 2007, 10(5): A134. |
72 | DELMAS C, MACCARIO M, CROGUENNEC L, et al. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model[J]. Nature Materials, 2008, 7(8): 665-671. |
73 | WAGEMAKER M, MULDER F M. Properties and promises of nanosized insertion materials for Li-ion batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1206-1215. |
74 | MALIK R, ZHOU F, CEDER G. Kinetics of non-equilibrium lithium incorporation in LiFePO4[J]. Nature Materials, 2011, 10(8): 587-590. |
75 | BAI P, COGSWELL D A, BAZANT M Z. Suppression of phase separation in LiFePO4 nanoparticles during battery discharge[J]. Nano Letters, 2011, 11(11): 4890-4896. |
76 | TANG K, YU X Q, SUN J P, et al. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS[J]. Electrochimica Acta, 2011, 56(13): 4869-4875. |
77 | WAGEMAKER M, SINGH D P, BORGHOLS W J H, et al. Dynamic solubility limits in nanosized olivine LiFePO4[J]. Journal of the American Chemical Society, 2011, 133(26): 10222-10228. |
78 | BAZANT M Z. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics[J]. Accounts of Chemical Research, 2013, 46(5): 1144-1160. |
79 | LOVE C T, KOROVINA A, PATRIDGE C J, et al. Review of LiFePO4 phase transition mechanisms and new observations from X-ray absorption spectroscopy[J]. Journal of the Electrochemical Society, 2013, 160(5): A3153-A3161. |
80 | SHAPIRO D A, YU Y S, TYLISZCZAK T, et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy[J]. Nature Photonics, 2014, 8(10): 765-769. |
81 | LIU H, STROBRIDGE F C, BORKIEWICZ O J, et al. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes[J]. Science, 2014, 344(6191): e1252817. |
82 | WAGEMAKER M, MULDER F M. Properties and promises of nanosized insertion materials for Li-ion batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1206-1215. |
83 | LIU Z, HUANG X. Factors that affect activation energy for Li diffusion in LiFePO4: A first-principles investigation[J]. Solid State Ionics, 2010, 181(19/20): 907-913. |
84 | LIU H, LI C, CAO Q, et al. Effects of heteroatoms on doped LiFePO4/C composites[J]. Journal of Solid State Electrochemistry, 2008, 12(7): 1017-1020. |
85 | MOLENDA J, OJCZYK W, WIERCZEK K. Diffusional mechanism of deintercalation in LiFe1- yMnyPO4 cathode material[J]. Solid State Ionics, 2006, 177(26/27/28/29/30/31/32): 2617-2624. |
86 | ARAVINDAN V, GNANARAJ J, LEE Y S, et al. LiMnPO4-A next generation cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(11): 3518-3539. |
87 | YAMADA A, KUDO Y, LIU K Y. Phase diagram of Lix(MnyFe1– y)PO4 (0≤x, y≤1)[J]. Journal of the Electrochemical Society, 2001, 148(10): A1153. |
88 | SHANG S L, WANG Y, MEI Z G, et al. Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M=Mn, Fe, Co, and Ni): A comparative first-principles study[J]. Journal of Materials Chemistry, 2012, 22(3): 1142-1149. |
89 | DELL'ERA A, PASQUALI M, BAUER E, et al. Synthesis, characterization, and electrochemical behavior of LiMnxFe(1– x)PO4 composites obtained from phenylphosphonate-based organic-inorganic hybrids[J]. Materials, 2017, 11(1): 56. |
90 | CHANG L J, BI X L, LUO S H, et al. Investigation on structural and electrochemical properties of olivine-structured LiMn1– xFexPO4/C cathode materials based on first-principles calculation[J]. Journal of the Electrochemical Society, 2022, 169(1): 010508. |
91 | LI Y C, XING B Y, WANG Z G, et al. Constructing a hierarchical LiMn0.8Fe0.2PO4/C cathode via comodification of Li3PO4 and graphite for high-performance lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(9): 10983-10993. |
92 | SONG Z Y, CHEN S L, DU S, et al. Construction of high-performance LiMn0.8Fe0.2PO4/C cathode by using quinoline soluble substance from coal pitch as carbon source for lithium ion batteries[J]. Journal of Alloys and Compounds, 2022, 927: 166921. |
93 | ZENG T T, HU Z, ZHOU Z Y, et al. Boron-catalyzed graphitization carbon layer enabling LiMn0.8Fe0.2PO4 cathode superior kinetics and Li-storage properties[J]. Small Methods, 2023, 7(2): 2201390. |
94 | ZENG T T, LIU D H, FAN C L, et al. LiMn0.8Fe0.2PO4@C cathode prepared via a novel hydrated MnHPO4 intermediate for high performance lithium-ion batteries[J]. Inorganic Chemistry Frontiers, 2023, 10(4): 1164-1175. |
95 | WU B, GAO W L. LiMn0.7Fe0.3PO4 nanorods grown on graphene sheets synthesized in situ by modified microwave-assisted solvothermal method as high-performance cathode materials[J]. Journal of Materials Science, 2018, 53(6): 4433-4443. |
96 | TRINH N D, AI Z W, LIANG G, et al. Structural changes in electrochemically cycled LiMn0.7Fe0.3PO4[J]. Solid State Ionics, 2018, 324: 33-39. |
97 | AN L W, LIU H, LIU Y Y, et al. The best addition of graphene to LiMn0.7Fe0.3PO4/C cathode material synthesized by wet ball milling combined with spray drying method[J]. Journal of Alloys and Compounds, 2018, 767: 315-322. |
98 | GUO Z J, CHEN Z L. Microwave-assisted solvothermal synthesis and performances of LiMn0.7Fe0.3PO4 nanoplates[J]. Materials and Manufacturing Processes, 2018, 33(8): 813-816. |
99 | SONG Y, LIU Y, OU X. Heat-rate-controlled hydrothermal crystallization of high-performance LiMn0.7Fe0.3PO4 cathode material for lithium-ion batteries[J]. Ceramics International, 2020, 46(4): 5069-5076. |
100 | DING D, MAEYOSHI Y, KUBOTA M, et al. Highly improved performances of LiMn0.7Fe0.3PO4 cathode with in situ electrochemically reduced graphene oxide[J]. Journal of Alloys and Compounds, 2019, 793: 627-634. |
101 | DING D, MAEYOSHI Y, KUBOTA M, et al. Holey reduced graphene oxide/carbon nanotube/LiMn0.7Fe0.3PO4 composite cathode for high-performance lithium batteries[J]. Journal of Power Sources, 2020, 449: 227553. |
102 | XIONG Y L, WEI Y, RONG W Y, et al. Preparation and electrochemical properties of carbon-coated LiMn0.6Fe0.4PO4 cathode material for lithium-ion batteries[J]. ECS Journal of Solid State Science and Technology, 2022, 11(11): 113001. |
103 | MINNETTI L, MARANGON V, HASSOUN J. Synthesis and characterization of a LiFe0.6Mn0.4PO4 olivine cathode for application in a new lithium polymer battery[J]. Advanced Sustainable Systems, 2022, 6(5): 2100464. |
104 | ZHANG B C, MENG W, GONG Y F, et al. [001]-oriented LiMn0.6Fe0.4PO4/C nanorod microspheres contributing high-rate performance to olivine-structured cathode for lithium-ion battery[J]. Materials Today Energy, 2022, 30: 101162. |
105 | DATHAR G K P, SHEPPARD D, STEVENSON K J, et al. Calculations of Li-ion diffusion in olivine phosphates[J]. Chemistry of Materials, 2011, 23(17): 4032-4037. |
106 | KANDHASAMY S, NALLATHAMBY K, MINAKSHI M. Role of structural defects in olivine cathodes[J]. Progress in Solid State Chemistry, 2012, 40(1/2): 1-5. |
107 | LIU H, CHOE M J, ENRIQUE R A, et al. Effects of antisite defects on Li diffusion in LiFePO4 revealed by Li isotope exchange[J]. The Journal of Physical Chemistry C, 2017, 121(22): 12025-12036. |
108 | HONG L, YANG K Q, TANG M. A mechanism of defect-enhanced phase transformation kinetics in lithium iron phosphate olivine[J]. NPJ Computational Materials, 2019, 5: 118. |
109 | TANG M, BELAK J F, DORR M R. Anisotropic phase boundary morphology in nanoscale olivine electrode particles[J]. The Journal of Physical Chemistry C, 2011, 115(11): 4922-4926. |
110 | LIU F Q, SIDDIQUE N A, MUKHERJEE P P. Nonequilibrium phase transformation and particle shape effect in LiFePO4 materials for Li-ion batteries[J]. Electrochemical and Solid-State Letters, 2011, 14(10): A143. |
111 | XIAO P H, HENKELMAN G. Kinetic Monte Carlo study of Li intercalation in LiFePO4[J]. ACS Nano, 2018, 12(1): 844-851. |
112 | LI Z J, YANG J X, LI C J, et al. Orientation-dependent lithium miscibility gap in LiFePO4[J]. Chemistry of Materials, 2018, 30(3): 874-878. |
[1] | 张贵萍, 闫筱炎, 王兵, 姚培新, 胡昌杰, 刘奕哲, 李纾黎, 薛建军. 长寿命循环的磷酸铁锂电池及材料、工艺[J]. 储能科学与技术, 2023, 12(7): 2134-2140. |
[2] | 马敬轩, 宋宇航, 石爽, 吕娜伟, 尹康涌, 王桂荣, 杜开源, 金阳. 基于气压信号突变探测的液冷型磷酸铁锂电池模组热失控预警研究[J]. 储能科学与技术, 2023, 12(7): 2246-2255. |
[3] | 翟智, 王福金, 邸一, 马珮羽, 赵志斌, 陈雪峰. 基于分层对齐迁移学习的锂离子电池容量估计[J]. 储能科学与技术, 2023, 12(4): 1223-1233. |
[4] | 程志翔, 曹伟, 户波, 程云芳, 李鑫, 姜丽华, 金凯强, 王青松. 储能用大容量磷酸铁锂电池热失控行为及燃爆传播特性[J]. 储能科学与技术, 2023, 12(3): 923-933. |
[5] | 倪鸾, 王育飞, 薛花, 于艾清. 计及多时间尺度不确定性的电-氢一体化储能站随机-鲁棒混合规划[J]. 储能科学与技术, 2023, 12(3): 846-856. |
[6] | 宋杰, 耿林霄, 桑永福, 温荣斌, 孙鹏, 弓林娟. 基于EMD分解的混合储能辅助火电机组一次调频容量规划[J]. 储能科学与技术, 2023, 12(2): 496-503. |
[7] | 王放放, 冯祥明, 赵光金, 夏大伟, 胡玉霞, 陈卫华. 电化学阻抗谱识别不同化学体系退役动力锂离子电池[J]. 储能科学与技术, 2023, 12(2): 609-614. |
[8] | 陈海东, 蒙飞, 王庆, 侯峰, 王亦, 张志华. 储能系统和新能源发电装机容量对电力系统性能的影响[J]. 储能科学与技术, 2023, 12(2): 477-485. |
[9] | 胡自锋, 徐耀祖, 段振云, 商向东, 徐景久. 新型蓄热体结构蓄热过程分析[J]. 储能科学与技术, 2023, 12(1): 165-171. |
[10] | 俎梦杨, 张梦, 李子坤, 黄令. 高镍NCA、NCM及NCMA材料循环容量衰减机理研究[J]. 储能科学与技术, 2023, 12(1): 51-60. |
[11] | 杨水丽, 林伟芳, 崔艳妍, 王二军. 基于功率和容量补偿的火/储AGC调频可行性分析与启示[J]. 储能科学与技术, 2023, 12(1): 299-311. |
[12] | 宋来丰, 梅文昕, 贾壮壮, 王青松. 绝热条件下280 Ah大型磷酸铁锂电池热失控特性分析[J]. 储能科学与技术, 2022, 11(8): 2411-2417. |
[13] | 尹涛, 贾隆舟, 常修亮, 戴作强, 郑莉莉. 软包磷酸铁锂电池高电压浮充后热安全研究[J]. 储能科学与技术, 2022, 11(8): 2546-2555. |
[14] | 石爽, 吕娜伟, 马敬轩, 尹康涌, 孙磊, 张宁, 金阳. 不同类型气体探测对磷酸铁锂电池储能舱过充安全预警有效性对比[J]. 储能科学与技术, 2022, 11(8): 2452-2462. |
[15] | 刘伯峥, 曹六阳, 曾涛, 殷雅侠, 郭玉国. 束缚力对磷酸铁锂电池安全性影响[J]. 储能科学与技术, 2022, 11(8): 2556-2563. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||