储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2079-2094.doi: 10.19799/j.cnki.2095-4239.2023.0295
王怡1(), 陈学兵1, 王愿习1, 郑杰允1,2, 刘啸嵩1,3, 李泓1,2()
收稿日期:
2023-05-04
修回日期:
2023-06-13
出版日期:
2023-07-05
发布日期:
2023-07-25
通讯作者:
李泓
E-mail:wangyi@aesit.com.cn;hli@iphy.ac.cn
作者简介:
王怡(1992—),女,博士,研究方向为电池失效分析与逆向分析,E-mail:wangyi@aesit.com.cn;
基金资助:
Yi WANG1(), Xuebing CHEN1, Yuanxi WANG1, Jieyun ZHENG1,2, Xiaosong LIU1,3, Hong LI1,2()
Received:
2023-05-04
Revised:
2023-06-13
Online:
2023-07-05
Published:
2023-07-25
Contact:
Hong LI
E-mail:wangyi@aesit.com.cn;hli@iphy.ac.cn
摘要:
锂离子电池电化学和安全性能与其材料、极片和电池各层级的特性密切相关,揭示储能锂离子电池多层级的失效机理,可为储能锂离子电池的设计优化、使用管控提供指导。本文以广泛应用的磷酸铁锂储能电池为例,从材料、极片、电池层级出发,分别综述了其常见的失效形式以及对应的失效机理与表征分析技术。在本文中多层级的失效包括正负极材料的结构、组成和表界面失效以及电解液和隔膜的失效;极片的析锂、孔隙率、剥离和非均匀极化失效;电池的产气和热失控失效。最后对未来储能失效分析技术进行展望,包含先进表征技术应用、标准化失效分析流程等方面,希望能为储能锂电池失效分析技术的发展起到积极的推动作用。
中图分类号:
王怡, 陈学兵, 王愿习, 郑杰允, 刘啸嵩, 李泓. 储能锂离子电池多层级失效机理及分析技术综述[J]. 储能科学与技术, 2023, 12(7): 2079-2094.
Yi WANG, Xuebing CHEN, Yuanxi WANG, Jieyun ZHENG, Xiaosong LIU, Hong LI. Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2079-2094.
表1
电池中关键材料的主要失效形式及分析技术汇总"
材料 | 失效形式 | 分析技术 |
---|---|---|
正/负极材料 | 结构失效 (相变、颗粒 开裂、剥离) 组成失效 | X射线衍射(X-ray diffraction,XRD)、扫描电子显微镜(scanning electron microscope,SEM)、透射电子显微镜(transmission electron microscopy,TEM)、拉曼光谱(Raman)、纳米-电子计算机断层扫描仪(nano-computerized tomography,nano-CT)、中子衍射(neutron diffraction,ND)、扩展X射线吸收精细谱(extended X-ray absorption fine structure,EXAFS) 电感耦合等离子体发射光谱仪(inductively coupled plasma optical emission spectrometer,ICP-OES)、X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)、飞行时间-二次离子质谱(time of flight secondary ion mass spectrometry,TOF-SIMS)、软X射线吸收谱(soft X-ray absorption spectroscopy,sXAS)、X射线能谱(energy dispersive spectrometer,EDS)、X射线荧光光谱仪(X-ray fluorescence,XRF) |
表界面失效 | XPS、TOF-SIMS、俄歇电子能谱(Auger electron spectroscopy,AES)、EDS、红外光谱仪(Fourier transform infrared reflection,FTIR)、冷冻电镜(cryo-transmission electron microscope,cryo-TEM)、原子力显微镜(atomic force microscope,AFM) | |
电解液 | 氧化/还原分解、组成变化 | 核磁共振(nuclear magnetic resonance,NMR)、气相色谱质谱联用仪(gas chromatography-mass spectrometry,GC-MS)、液相色谱质谱联用(liquid chromatograph-mass spectrometer,LC-MS)、离子色谱(ion chromatography,IC) |
隔膜 | 氧化、堵孔、 刺穿等 | EDS、XPS、TOF-SIMS、FTIR、SEM |
1 | 宋丽, 陈永明. 现代电力系统中储能技术的应用作用分析[J]. 电子元器件与信息技术, 2019, 3(12): 94-95. |
SONG L, CHEN Y M. Analysis on the application of energy storage technology in modern power system[J]. Electronic Components and Information Technology, 2019, 3(12): 94-95. | |
2 | 元博, 张运洲, 鲁刚, 等. 电力系统中储能发展前景及应用关键问题研究[J]. 中国电力, 2019, 52(3): 1-8. |
YUAN B, ZHANG Y Z, LU G, et al. Research on key issues of energy storage development and application in power systems[J]. Electric Power, 2019, 52(3): 1-8. | |
3 | 马静, 江依义, 沈旻, 等. 锂离子电池储能产业发展现状与对策建议[J]. 浙江化工, 2022, 53(12): 17-23. |
MA J, JIANG Y Y, SHEN M, et al. Development status and countermeasures of lithium-ion battery energy storage industry[J]. Zhejiang Chemical Industry, 2022, 53(12): 17-23. | |
4 | 李晨尧, 李孝斌, 武军利, 等. 灭火剂抑制锂电池火灾研究现状分析[J]. 安全, 2023, 44(1): 54-59. |
LI C Y, LI X B, WU J L, et al. Analysis on current research status of lithium-ion battery fire suppression by fire extinguishing agents[J]. Safety & Security, 2023, 44(1): 54-59. | |
5 | 贾超, 赵霞, 张妍. 锂电池储能电站火灾风险分析与对策探讨[J]. 电力安全技术, 2022, 24(6): 23-26. |
JIA C, ZHAO X, ZHANG Y. Fire risk analysis and countermeasures of lithium battery energy storage power station[J]. Electric Safety Technology, 2022, 24(6): 23-26. | |
6 | 王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025. |
WANG Q Y, WANG S, ZHANG J N, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025. | |
7 | 王其钰, 王朔, 周格, 等. 锂电池失效分析与研究进展[J]. 物理学报, 2018, 67(12): 279-290. |
WANG Q Y, WANG S, ZHOU G, et al. Progress on the failure analysis of lithium battery[J]. Acta Physica Sinica, 2018, 67(12): 279-290. | |
8 | 黄海宁. 磷酸铁锂电池循环寿命衰减和寿命预测[J]. 电源技术, 2022, 46(4): 376-379. |
HUANG H N. Cycle life fading of LiFePO4 lithium-ion battery and its life prediction[J]. Chinese Journal of Power Sources, 2022, 46(4): 376-379. | |
9 | 刘晓梅, 姚斌, 谢乐琼, 等. 磷酸铁锂动力电池常温循环衰减机理分析[J]. 储能科学与技术, 2021, 10(04): 1338-1343. |
LIU X M, YAO B, XIE L Q, et al. Analysis of the capacity fading mechanism in lithium iron phosphate power batteries cycled at ambient temperatures[J]. Energy Storage Science and Technology, 2021, 10(4): 1338-1343. | |
10 | 苗萌, 马冬梅, 贺狄龙. 磷酸铁锂动力电池失效的研究进展[J]. 电源技术, 2016, 40(2): 458-461. |
MIAO M, MA D M, HE D L. Progress in failure of power LiFePO4 batteries[J]. Chinese Journal of Power Sources, 2016, 40(2): 458-461. | |
11 | ZHANG W J. Structure and performance of LiFePO4 cathode materials: A review[J]. Journal of Power Sources, 2011, 196(6): 2962-2970. |
12 | SCIPIONI R, JØRGENSEN P S, HJELM J, et al. Degradation studies on LiFePO4 cathode[J]. ECS Transactions, 2015, 64(22): 97-106. |
13 | WANG L, QIU J Y, WANG X D, et al. Insights for understanding multiscale degradation of LiFePO4 cathodes[J]. eScience, 2022, 2(2): 125-137. |
14 | LIN N, JIA Z, WANG Z H, et al. Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam-scanning electron microscopy[J]. Journal of Power Sources, 2017, 365: 235-239. |
15 | AURBACH D. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics, 2002, 148(3/4): 405-416. |
16 | VETTER J, NOVÁK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1/2): 269-281. |
17 | 张杰男, 汪君洋, 吕迎春, 等. 锂电池研究中的X射线多晶衍射实验与分析方法综述[J]. 储能科学与技术, 2019, 8(3): 443-467. |
ZHANG J N, WANG J Y, LYU Y C, et al. Experimental measurement and analysis methods of polycrystalline X-ray diffraction for lithium batteries[J]. Energy Storage Science and Technology, 2019, 8(3): 443-467. | |
18 | ZHU Y L, ZHU J G, JIANG B, et al. Insights on the degradation mechanism for large format prismatic graphite/LiFePO4 battery cycled under elevated temperature[J]. Journal of Energy Storage, 2023, 60: doi: 10.1016/j.est.2023.106624. |
19 | TIAN F, BEN L B, YU H L, et al. Understanding high-temperature cycling-induced crack evolution and associated atomic-scale structure in a Ni-rich LiNi0.8Co0.1Mn0.1O2 layered cathode material[J]. Nano Energy, 2022, 98: doi: 10.1016/j.nanoen.2022.107222. |
20 | JIN H F, LIU Z, TENG Y M, et al. A comparison study of capacity degradation mechanism of LiFePO4-based lithium ion cells[J]. Journal of Power Sources, 2009, 189(1): 445-448. |
21 | LI D J, DANILOV D L, XIE J, et al. Degradation mechanisms of C6/LiFePO4 batteries: Experimental analyses of calendar aging[J]. Electrochimica Acta, 2016, 190: 1124-1133. |
22 | ZHOU G, SUN X R, LI Q H, et al. Mn ion dissolution mechanism for lithium-ion battery with LiMn2O4 cathode: in situ ultraviolet-visible spectroscopy and ab initio molecular dynamics simulations[J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 3051-3057. |
23 | ZHAN C, WU T P, LU J, et al. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes-A critical review[J]. Energy & Environmental Science, 2018, 11(2): 243-257. |
24 | 周格. 锂离子电池失效分析——过渡金属溶解沉积及产气研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2019. |
25 | 姚斌, 滕国鹏, 刘晓梅, 等. 磷酸铁锂电池高温存储性能衰减机理[J]. 电源技术, 2018, 42(7): 955-958. |
YAO B, TENG G P, LIU X M, et al. Mechanism of calendar life fading of high temperature stored LiFePO4-based Li-ion cells[J]. Chinese Journal of Power Sources, 2018, 42(7): 955-958. | |
26 | XU J J, ZHANG J X, POLLARD T P, et al. Electrolyte design for Li-ion batteries under extreme operating conditions[J]. Nature, 2023, 614(7949): 694-700. |
27 | AGUBRA V, FERGUS J. Lithium ion battery anode aging mechanisms[J]. Materials, 2013, 6(4): 1310-1325. |
28 | EDSTRÖM K, GUSTAFSSON T, THOMAS J O. The cathode-electrolyte interface in the Li-ion battery[J]. Electrochimica Acta, 2004, 50(2/3): 397-403. |
29 | ZHENG Y, HE Y B, QIAN K, et al. Effects of state of charge on the degradation of LiFePO4/graphite batteries during accelerated storage test[J]. Journal of Alloys and Compounds, 2015, 639: 406-414. |
30 | WALDMANN T, ITURRONDOBEITIA A, KASPER M, et al. Review—Post-mortem analysis of aged lithium-ion batteries: Disassembly methodology and physico-chemical analysis techniques[J]. Journal of the Electrochemical Society, 2016, 163(10): A2149-A2164. |
31 | 翁素婷, 刘泽鹏, 杨高靖, 等. 冷冻电镜表征锂电池中的辐照敏感材料[J]. 储能科学与技术, 2022, 11(3): 760-780. |
WENG S T, LIU Z P, YANG G J, et al. Cryogenic electron microscopy(cryo-EM)characterizing beam-sensitive materials in lithium metal batteries[J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. | |
32 | ZHENG J Y, ZHENG H, WANG R, et al. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries[J]. Phys Chem Chem Phys, 2014, 16(26): 13229-13238. |
33 | LIU Y K, ZHAO C Z, DU J A, et al. Research progresses of liquid electrolytes in lithium-ion batteries[J]. Small, 2023, 19(8): doi: 1002/smll.202205315. |
34 | THOMPSON L M, HARLOW J E, ELDESOKY A, et al. Study of electrolyte and electrode composition changes vs time in aged Li-ion cells[J]. Journal of the Electrochemical Society, 2021, 168(2): 020532. |
35 | MÖNNIGHOFF X, FRIESEN A, KONERSMANN B, et al. Supercritical carbon dioxide extraction of electrolyte from spent lithium ion batteries and its characterization by gas chromatography with chemical ionization[J]. Journal of Power Sources, 2017, 352: 56-63. |
36 | 孙晓辉, 曾红燕, 李景康. 动力锂离子电池化成过程中电解液组分变化研究[J]. 当代化工研究, 2022(9): 57-59. |
SUN X H, ZENG H Y, LI J K. Study on the change of electrolyte composition during the formation of power lithium ion battery[J]. Modern Chemical Research, 2022(9): 57-59. | |
37 | 陆大班, 林少雄, 胡淑婉, 等. 三元动力锂离子电池不同温度循环失效分析[J]. 安徽大学学报(自然科学版), 2021, 45(1): 92-97. |
LU D B, LIN S X, HU S W, et al. Analysis of cycling performance failure of ternary power lithium ion cell at different temperature[J]. Journal of Anhui University (Natural Science Edition), 2021, 45(1): 92-97. | |
38 | 周江, 刘松涛, 岳仍利. 高比能锂离子电池过充失效机理研究[J]. 电源技术, 2021, 45(12): 1544-1547. |
ZHOU J, LIU S T, YUE R L. Study on overcharge failure mechanism of high specific energy lithium-ion power battery[J]. Chinese Journal of Power Sources, 2021, 45(12): 1544-1547. | |
39 | KLEIN S, HARTE P, VAN WICKEREN S, et al. Re-evaluating common electrolyte additives for high-voltage lithium ion batteries[J]. Cell Reports Physical Science, 2021, 2(8): doi: 1016/j.xcrp.2021. 100521. |
40 | 邓林旺, 冯天宇, 舒时伟, 等. 锂离子电池无损析锂检测研究进展[J]. 储能科学与技术, 2023, 12(1): 263-277. |
DENG L W, FENG T Y, SHU S W, et al. Research progress on nondestructive detection of lithium evolution in lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(1): 263-277. | |
41 | 樊亚平, 晏莉琴, 简德超, 等. 锂离子电池失效中析锂现象的原位检测方法综述[J]. 储能科学与技术, 2019, 8(6): 1040-1049. |
FAN Y P, YAN L Q, JIAN D C, et al. In situ detection of lithium dendrite in the failure of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1040-1049. | |
42 | DOWNIE L E, KRAUSE L J, BURNS J C, et al. In situ detection of lithium plating on graphite electrodes by electrochemical calorimetry[J]. Journal of the Electrochemical Society, 2013, 160(4): A588-A594. |
43 | 张剑波, 苏来锁, 李新宇, 等. 基于锂离子电池老化行为的析锂检测[J]. 电化学, 2016, 22(6): 607-616. |
ZHANG J B, SU L S, LI X Y, et al. Lithium plating identification from degradation behaviors of lithium-ion cells[J]. Journal of Electrochemistry, 2016, 22(6): 607-616. | |
44 | WALDMANN T, WILKA M, KASPER M, et al. Temperature dependent ageing mechanisms in lithium-ion batteries-A post-mortem study[J]. Journal of Power Sources, 2014, 262: 129-135. |
45 | DOLLÉ M, ORSINI F, GOZDZ A S, et al. Development of reliable three-electrode impedance measurements in plastic Li-ion batteries[J]. Journal of the Electrochemical Society, 2001, 148(8): A851. |
46 | 朱振东, 吴欢欢, 张峥, 等. 锂离子电池析锂及析锂回嵌行为的三电极分析[J]. 储能科学与技术, 2021, 10(2): 448-453. |
ZHU Z D, WU H H, ZHANG Z, et al. Three-electrode analysis of lithium evolution and lithium intercalation behavior in lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(2): 448-453. | |
47 | PETZL M, DANZER M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries[J]. Journal of Power Sources, 2014, 254: 80-87. |
48 | UHLMANN C, ILLIG J, ENDER M, et al. In situ detection of lithium metal plating on graphite in experimental cells[J]. Journal of Power Sources, 2015, 279: 428-438. |
49 | BITZER B, GRUHLE A. A new method for detecting lithium plating by measuring the cell thickness[J]. Journal of Power Sources, 2014, 262: 297-302. |
50 | GRIMSMANN F, GERBERT T, BRAUCHLE F, et al. Determining the maximum charging currents of lithium-ion cells for small charge quantities[J]. Journal of Power Sources, 2017, 365: 12-16. |
51 | 邓哲, 黄震宇, 刘磊, 等. 超声技术在锂离子电池表征中的应用[J]. 储能科学与技术, 2019, 8(6): 1033-1039. |
DENG Z, HUANG Z Y, LIU L, et al. Applications of ultrasound technique in characterization of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1033-1039. | |
52 | FANG Y, SMITH A J, LINDSTRÖM R W, et al. Quantifying lithium lost to plating and formation of the solid-electrolyte interphase in graphite and commercial battery components[J]. Applied Materials Today, 2022, 28: doi: 0.1016/j.apmt. 2022.101527. |
53 | 孙涛, 沈腾腾, 刘昕, 等. 滴定-气相色谱技术在锂离子电池析锂定量检测中的应用[J]. 储能科学与技术, 2022, 11(8): 2564-2573. |
SUN T, SHEN T T, LIU X, et al. Application of titration-gas chromatography technology in quantitative detection of lithium evolution from lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(8): 2564-2573. | |
54 | 杨鹏. 锂离子电池容量衰减的研究[D]. 上海: 上海交通大学, 2013.YANG P. Study on capacity attenuation of lithium ion battery[D]. Shanghai: Shanghai Jiao Tong University, 2013. |
55 | CHANNAGIRI S A, NAGPURE S C, BABU S S, et al. Porosity and phase fraction evolution with aging in lithium iron phosphate battery cathodes[J]. Journal of Power Sources, 2013, 243: 750-757. |
56 | 杨丽杰. 锂离子电池石墨类碳负极的容量衰减机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
57 | 宋岚, 熊若愚, 宋华雄, 等. 锂离子电池多尺度非均匀性概述[J]. 储能科学与技术, 2022, 11(2): 487-502. |
SONG L, XIONG R Y, SONG H X, et al. Multiscale nonuniformity of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(2): 487-502. | |
58 | CAI L, AN K, FENG Z L, et al. In-situ observation of inhomogeneous degradation in large format Li-ion cells by neutron diffraction[J]. Journal of Power Sources, 2013, 236: 163-168. |
59 | BUROW D, SERGEEVA K, CALLES S, et al. Inhomogeneous degradation of graphite anodes in automotive lithium ion batteries under low-temperature pulse cycling conditions[J]. Journal of Power Sources, 2016, 307: 806-814. |
60 | 马天翼, 苏素, 张宗, 等. 计算机断层扫描技术在锂离子电池检测中的应用研究[J]. 重庆理工大学学报(自然科学), 2020, 34(2): 133-139. |
MA T Y, SU S, ZHANG Z, et al. Application of computed tomography in lithium-ion battery detection[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(2): 133-139. | |
61 | MOHANTY D, HOCKADAY E, LI J, et al. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources[J]. Journal of Power Sources, 2016, 312: 70-79. |
62 | 原蓓蓓, 张峥, 李红, 等. 动力电池排气机理与检测方法研究综述[J]. 中国汽车, 2022, 32(12): 32-39. |
YUAN B B, ZHANG Z, LI H, et al. Review on exhaust mechanism and detection methods of power battery[J]. China Auto, 2022, 32(12): 32-39. | |
63 | ROWDEN B, GARCIA-ARAEZ N. A review of gas evolution in lithium ion batteries[J]. Energy Reports, 2020, 6: 10-18. |
64 | 夏玉佳, 朱振东. 磷酸铁锂锂离子电池化成产气的机理[J]. 电池, 2020, 50(6): 534-537. |
XIA Y J, ZHU Z D. Gas generation mechanism of lithium iron phosphate Li-ion battery during formation[J]. Battery Bimonthly, 2020, 50(6): 534-537. | |
65 | KONG W H, LI H, HUANG X J, et al. Gas evolution behaviors for several cathode materials in lithium-ion batteries[J]. Journal of Power Sources, 2005, 142(1/2): 285-291. |
66 | LANZ M, NOVÁK P. DEMS study of gas evolution at thick graphite electrodes for lithium-ion batteries: The effect of γ-butyrolactone[J]. Journal of Power Sources, 2001, 102(1/2): 277-282. |
67 | SCHMIEGEL J P, LEIßING M, WEDDELING F, et al. Novel in situ gas formation analysis technique using a multilayer pouch bag lithium ion cell equipped with gas sampling port[J]. Journal of the Electrochemical Society, 2020, 167(6): 060516. |
68 | 王其钰, 李泓. 锂电池安全问题及失效分析[J]. 新能源科技, 2021(11): 15-19. |
WANG Q Y, LI H. Safety problems and failure analysis of lithium battery[J]. New Energy Technology, 2021(11): 15-19. | |
69 | 王芳, 王峥, 林春景, 等. 新能源汽车动力电池安全失效潜在原因分析[J]. 储能科学与技术, 2022, 11(5): 1411-1418. |
WANG F, WANG Z, LIN C J, et al. Analysis on potential causes of safety failure of new energy vehicles[J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. | |
70 | 王莉, 冯旭宁, 薛钢, 等. 锂离子电池安全性评估的ARC测试方法和数据分析[J]. 储能科学与技术, 2018, 7(6): 1261-1270. |
WANG L, FENG X N, XUE G, et al. ARC experimental and data analysis for safety evaluation of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1261-1270. | |
71 | 刘洋, 陶风波, 孙磊, 等. 磷酸铁锂储能电池热失控及其内部演变机制研究[J]. 高电压技术, 2021, 47(4): 1333-1343. |
LIU Y, TAO F B, SUN L, et al. Research of thermal runaway and internal evolution mechanism of lithium iron phosphate energy storage battery[J]. High Voltage Engineering, 2021, 47(4): 1333-1343. | |
72 | 曹文炅, 雷博, 史尤杰, 等. 韩国锂离子电池储能电站安全事故的分析及思考[J]. 储能科学与技术, 2020, 9(5): 1539-1547. |
CAO W J, LEI B, SHI Y J, et al. Ponderation over the recent safety accidents of lithium-ion battery energy storage stations in South Korea[J]. Energy Storage Science and Technology, 2020, 9(5): 1539-1547. | |
73 | 赵家旺, 周荣, 朱永扬, 等. 电动汽车用锂离子电池安全性研究[J]. 电源技术, 2018, 42(8): 1134-1135, 1179. |
ZHAO J W, ZHOU R, ZHU Y Y, et al. Research on safety of lithium-ion battery for electric vehicle[J]. Chinese Journal of Power Sources, 2018, 42(8): 1134-1135, 1179. | |
74 | SIEGEL J B, LIN X F, STEFANOPOULOU A G, et al. Neutron imaging of lithium concentration in LFP pouch cell battery[J]. Journal of the Electrochemical Society, 2011, 158(5): A523. |
75 | YU W L, YU Z A, CUI Y, et al. Degradation and speciation of Li salts during XPS analysis for battery research[J]. ACS Energy Letters, 2022, 7(10): 3270-3275. |
[1] | 武明虎, 岳程鹏, 张凡, 李俊晓, 黄伟, 胡胜, 唐靓. 多尺度分解下GRU-MLR组合的锂电池剩余使用寿命预测方法[J]. 储能科学与技术, 2023, 12(7): 2220-2228. |
[2] | 李晋, 王青松, 孔得朋, 王晓冬, 俞振华, 乐艳飞, 黄鑫炎, 胡振恺, 吴候福, 方华斌, 曹伟, 张少禹, 卓萍, 陈晔, 李紫婷, 梅文昕, 张越, 赵丽香, 唐亮, 黄宗侯, 陈篪, 刘彦辉, 储玉喜, 许晓元, 张晋, 李贻恺, 冯蓉, 杨标, 户波, 杨晓滢. 锂离子电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(7): 2282-2301. |
[3] | 张贵萍, 闫筱炎, 王兵, 姚培新, 胡昌杰, 刘奕哲, 李纾黎, 薛建军. 长寿命循环的磷酸铁锂电池及材料、工艺[J]. 储能科学与技术, 2023, 12(7): 2134-2140. |
[4] | 马丽娅, 郭宝辉. 储能模组失效分析及结构优化研究[J]. 储能科学与技术, 2023, 12(7): 2194-2201. |
[5] | 马敬轩, 宋宇航, 石爽, 吕娜伟, 尹康涌, 王桂荣, 杜开源, 金阳. 基于气压信号突变探测的液冷型磷酸铁锂电池模组热失控预警研究[J]. 储能科学与技术, 2023, 12(7): 2246-2255. |
[6] | 赵光金, 李博文, 胡玉霞, 董锐锋, 王放放. 退役动力电池梯次利用技术及工程应用概述[J]. 储能科学与技术, 2023, 12(7): 2319-2332. |
[7] | 乔荣涵, 朱璟, 申晓宇, 岑官骏, 郝峻丰, 季洪祥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.4.1—2023.5.31)[J]. 储能科学与技术, 2023, 12(7): 2333-2348. |
[8] | 王宏建, 赖永春, 苏先进, 曾春保, 许林毅. 在极端运行环境下的新型能源建设项目的解决方案[J]. 储能科学与技术, 2023, 12(7): 2349-2354. |
[9] | 许永红, 吴玉庭, 张红光, 杨富斌, 王焱. 基于气动马达的微型压缩空气储能系统的试验研究[J]. 储能科学与技术, 2023, 12(6): 1854-1861. |
[10] | 左兴龙, 柳亦兵, 秦润, 曲文浩, 滕伟. 飞轮储能虚拟同步机动态特性及对电力系统频率的改善分析[J]. 储能科学与技术, 2023, 12(6): 1920-1927. |
[11] | 陈绪昌, 王育飞, 薛花. 基于MDP-ADMM的数据中心储能系统优化运行方法[J]. 储能科学与技术, 2023, 12(6): 1890-1900. |
[12] | 彭子安, 段文超, 李杰, 孙小琴, 宋孟杰. 数据中心用壳管式相变储能换热器的储能特性[J]. 储能科学与技术, 2023, 12(6): 1765-1773. |
[13] | 郭亚威, 肖先勇, 郑子萱, 陈韵竹, 陈旭林. 综合能源服务商储能业务目标用户主动识别方法[J]. 储能科学与技术, 2023, 12(6): 2011-2021. |
[14] | 刘宇龄, 孟锦豪, 彭乔, 刘天琪, 王扬, 蔡永翔. 基于NSGA-II遗传算法的锂电池均衡指标优化[J]. 储能科学与技术, 2023, 12(6): 1946-1956. |
[15] | 张伟, 罗世刚, 滕婕, 白永利. 考虑温控负荷聚合调控的新能源-储能联合规划[J]. 储能科学与技术, 2023, 12(6): 1901-1912. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||