| 1 | MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4): 1-16. | 
																													
																						| 2 | LIU J, YUAN H, LIU H, et al. Unlocking the failure mechanism of solid state lithium metal batteries[J]. Advanced Energy Materials, 2022, 12(4): 2100748. | 
																													
																						| 3 | LIU J, XU R, YAN C, et al. In situ regulated solid electrolyte interphase via reactive separators for highly efficient lithium metal batteries[J]. Energy Storage Materials, 2020, 30: 27-33. | 
																													
																						| 4 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. | 
																													
																						| 5 | KOERVER R, ZHANG W B, DE BIASI L, et al. Chemo-mechanical expansion of lithium electrode materials‒On the route to mechanically optimized all-solid-state batteries[J]. Energy & Environmental Science, 2018, 11(8): 2142-2158. | 
																													
																						| 6 | FATHIANNASAB H, ZHU L K, CHEN Z W. Chemo-mechanical modeling of stress evolution in all-solid-state lithium-ion batteries using synchrotron transmission X-ray microscopy tomography[J]. Journal of Power Sources, 2021, 483: 229028. | 
																													
																						| 7 | ZHANG W B, SCHRÖDER D, ARLT T, et al. (Electro)chemical expansion during cycling: Monitoring the pressure changes in operating solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2017, 5(20): 9929-9936. | 
																													
																						| 8 | ZHANG L Q, YANG T T, DU C C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope‒environmental transmission electron microscope set-up[J]. Nature Nanotechnology, 2020, 15(2): 94-98. | 
																													
																						| 9 | YUAN C H, GAO X, JIA Y K, et al. Coupled crack propagation and dendrite growth in solid electrolyte of all-solid-state battery[J]. Nano Energy, 2021, 86: 106057. | 
																													
																						| 10 | ZHU J P, ZHAO J, XIANG Y X, et al. Chemomechanical failure mechanism study in NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid-state lithium batteries[J]. Chemistry of Materials, 2020, 32(12): 4998-5008. | 
																													
																						| 11 | HORII M, CHRISTIANSON R J, MUTHA H, et al. Modeling the effect of electrolyte microstructure on conductivity and solid-state Li-ion battery performance[J]. Journal of Power Sources, 2022, 528: 231177. | 
																													
																						| 12 | BIRKHOLZ O, GAN Y X, KAMLAH M. Modeling the effective conductivity of the solid and the pore phase in granular materials using resistor networks[J]. Powder Technology, 2019, 351: 54-65. | 
																													
																						| 13 | DANILOV D, NIESSEN R A H, NOTTEN P H L. Modeling all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(3): A215. | 
																													
																						| 14 | KAZEMI N, DANILOV D L, HAVERKATE L, et al. Modeling of all-solid-state thin-film Li-ion batteries: Accuracy improvement[J]. Solid State Ionics, 2019, 334: 111-116. | 
																													
																						| 15 | RAIJMAKERS L H J, DANILOV D L, EICHEL R A, et al. An advanced all-solid-state Li-ion battery model[J]. Electrochimica Acta, 2020, 330: 135147. | 
																													
																						| 16 | FABRE S D, GUY-BOUYSSOU D, BOUILLON P, et al. Charge/discharge simulation of an all-solid-state thin-film battery using a one-dimensional model[J]. Journal of the Electrochemical Society, 2011, 159(2): A104-A115. | 
																													
																						| 17 | TIAN H K, QI Y. Simulation of the effect of contact area loss in all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(11): E3512-E3521. | 
																													
																						| 18 | SHAO Y Q, LIU H L, SHAO X D, et al. An all coupled electrochemical-mechanical model for all-solid-state Li-ion batteries considering the effect of contact area loss and compressive pressure[J]. Energy, 2022, 239: 121929. | 
																													
																						| 19 | PERSSON B N J. Contact mechanics for randomly rough surfaces[J]. Surface Science Reports, 2006, 61(4): 201-227. |