储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2105-2118.doi: 10.19799/j.cnki.2095-4239.2023.0253
张佳怡1,2(), 翁素婷1,3, 王兆翔1,2,3, 王雪锋1,2,3,4()
收稿日期:
2023-04-25
修回日期:
2023-06-12
出版日期:
2023-07-05
发布日期:
2023-07-25
通讯作者:
王雪锋
E-mail:1114624518@qq.com;wxf@iphy.ac.cn
作者简介:
张佳怡(2001—),女,硕士研究生,研究方向为基于冷冻电镜电池材料的结构表征和机理探索,E-mail:1114624518@qq.com;
基金资助:
Jiayi ZHANG1,2(), Suting WENG1,3, Zhaoxiang WANG1,2,3, Xuefeng WANG1,2,3,4()
Received:
2023-04-25
Revised:
2023-06-12
Online:
2023-07-05
Published:
2023-07-25
Contact:
Xuefeng WANG
E-mail:1114624518@qq.com;wxf@iphy.ac.cn
摘要:
随着商用锂离子电池(LIBs)的蓬勃发展,其安全性的欠缺成为日益凸显且亟待解决的问题。作为LIBs事故的重要形式之一,热失控过程与石墨负极固体电解质界面(SEI)膜密切相关。因此,深入了解和精准调控SEI膜的性质成为提高LIBs安全性的前提和重要途径。本文首先对SEI膜的组分、结构,以及形成原理进行了简要介绍,尤其强调了SEI膜在热失控过程中所起的关键作用。其次,探讨了热失控过程中与SEI膜相关的不安全因素及其机理。对SEI膜的分解、锂化石墨的热解、可燃气体的释放、锂沉积、正极过渡金属(TM)对SEI膜的影响几个过程的分析表明,需要同时提高SEI膜自身的热稳定性和Li+在其中的传输能力,才能有效提高电池的安全性能。依据材料的结构和成分、性质、性能之间的决定性关系,对SEI膜的改性进行了广泛研究。调控电解液组分或在负极电极内引入添加剂进而对SEI膜进行原位调控,以及构筑无机或有机组分的人工SEI膜均能够有效调控SEI膜的特性。最后,展望了未来SEI膜的相关研究和调控方向,为提高LIBs的安全性提供了理论依据和实验指导。
中图分类号:
张佳怡, 翁素婷, 王兆翔, 王雪锋. 石墨负极界面SEI膜与锂离子电池热失控[J]. 储能科学与技术, 2023, 12(7): 2105-2118.
Jiayi ZHANG, Suting WENG, Zhaoxiang WANG, Xuefeng WANG. Solid electrolyte interphase (SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118.
1 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. |
2 | MELIN H E, RAJAEIFAR M A, KU A Y, et al. Global implications of the EU battery regulation[J]. Science, 2021, 373(6553): 384-387. |
3 | ALI RAJAEIFAR M, GHADIMI P, RAUGEI M, et al. Challenges and recent developments in supply and value chains of electric vehicle batteries: A sustainability perspective[J]. Resources, Conservation and Recycling, 2022, 180: 106144. |
4 | CAI W L, YAO Y X, ZHU G L, et al. A review on energy chemistry of fast-charging anodes[J]. Chemical Society Reviews, 2020, 49(12): 3806-3833. |
5 | ZU C X, YU H G, LI H. Enabling the thermal stability of solid electrolyte interphase in Li-ion battery[J]. InfoMat, 2021, 3(6): 48-661. |
6 | LI W F, WANG H W, OUYANG M G, et al. Theoretical and experimental analysis of the lithium-ion battery thermal runaway process based on the internal combustion engine combustion theory[J]. Energy Conversion and Management, 2019, 185: 211-222. |
7 | LOVERIDGE M, REMY G, KOURRA N, et al. Looking deeper into the galaxy (note 7)[J]. Batteries, 2018, 4(1): 3. |
8 | JIANG X M, CHEN Y J, MENG X K, et al. The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review[J]. Carbon, 2022, 191: 448-470. |
9 | LEI B X, ZHAO W J, ZIEBERT C, et al. Experimental analysis of thermal runaway in 18650 cylindrical Li-ion cells using an accelerating rate calorimeter[J]. Batteries, 2017, 3(4): 14. |
10 | WANG M, NOELLE D J, SHI Y, et al. Effect of Notch depth of modified current collector on internal-short-circuit mitigation for lithium-ion battery[J]. Journal of Physics D: Applied Physics, 2018, 51(1): 015502. |
11 | WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. |
12 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
13 | LI Y Q, LU Y X, ADELHELM P, et al. Intercalation chemistry of graphite: Alkali metal ions and beyond[J]. Chemical Society Reviews, 2019, 48(17): 4655-4687. |
14 | ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4(9): 3243-3262. |
15 | AURBACH D, MARKOVSKY B, SHECHTER A, et al. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures[J]. Journal of the Electrochemical Society, 1996, 143(12): 3809-3820. |
16 | VERMA P, MAIRE P, NOVÁK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341. |
17 | PELED E, MENKIN S. Review—SEI: Past, present and future[J]. Journal of the Electrochemical Society, 2017, 164(7): A1703-A1719. |
18 | XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
19 | AN S J, LI J L, DANIEL C, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105: 52-76. |
20 | YUAN S Y, WENG S T, WANG F, et al. Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition[J]. Nano Energy, 2021, 83: doi: 10. 1016/j. nanoen. 2021. 105847. |
21 | ZHU C N, SUN C C, LI R H, et al. Anion-diluent pairing for stable high-energy Li metal batteries[J]. ACS Energy Letters, 2022, 7(4): 1338-1347. |
22 | HEISKANEN S K, KIM J, LUCHT B L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries[J]. Joule, 2019, 3(10): 2322-2333. |
23 | NIE M Y, CHALASANI D, ABRAHAM D P, et al. Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy[J]. The Journal of Physical Chemistry C, 2013, 117(3): 1257-1267. |
24 | LIU T C, LIN L P, BI X X, et al. In situ quantification of interphasial chemistry in Li-ion battery[J]. Nature Nanotechnology, 2019, 14(1): 50-56. |
25 | YOON T, MILIEN M S, PARIMALAM B S, et al. Thermal decomposition of the solid electrolyte interphase (SEI) on silicon electrodes for lithium ion batteries[J]. Chemistry of Materials, 2017, 29(7): 3237-3245. |
26 | ZENG X J, LIU D Q, WANG S W, et al. In situ observation of interface evolution on a graphite anode by scanning electrochemical microscopy[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37047-37053. |
27 | SHI S Q, LU P, LIU Z Y, et al. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. Journal of the American Chemical Society, 2012, 134(37): 15476-15487. |
28 | BENITEZ L, SEMINARIO J M. Ion diffusivity through the solid electrolyte interphase in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(11): E3159-E3170. |
29 | RAMASUBRAMANIAN A, YURKIV V, FOROOZAN T, et al. Lithium diffusion mechanism through solid-electrolyte interphase in rechargeable lithium batteries[J]. The Journal of Physical Chemistry C, 2019, 123(16): 10237-10245. |
30 | PELJO P, GIRAULT H H. Electrochemical potential window of battery electrolytes: The HOMO-LUMO misconception[J]. Energy & Environmental Science, 2018, 11(9): 2306-2309. |
31 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
32 | 张慧敏, 王京, 王一博, 等. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382. |
ZHANG H M, WANG J, WANG Y B, et al. Multiscale modeling of the SEI of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(2): 366-382. | |
33 | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. |
34 | WU J P, WENG S T, ZHANG X A, et al. In situ detecting thermal stability of solid electrolyte interphase (SEI)[J]. Small, 2023, 19(25): e2208239. |
35 | HUANG S Q, CHEONG L Z, WANG D Y, et al. Thermal stability of solid electrolyte interphase of lithium-ion batteries[J]. Applied Surface Science, 2018, 454: 61-67. |
36 | LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): eaas9820. |
37 | PARIMALAM B S, MACINTOSH A D, KADAM R, et al. Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6[J]. The Journal of Physical Chemistry C, 2017, 121(41): 22733-22738. |
38 | SEO D M, CHALASANI D, PARIMALAM B S, et al. Reduction reactions of carbonate solvents for lithium ion batteries[J]. ECS Electrochemistry Letters, 2014, 3(9): A91-A93. |
39 | LIU X, YIN L, REN D S, et al. In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode[J]. Nature Communications, 2021, 12: 4235. |
40 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. |
41 | TRIPATHI A M, SU W N, HWANG B J. In situ analytical techniques for battery interface analysis[J]. Chemical Society Reviews, 2018, 47(3): 736-851. |
42 | KRISTON A, ADANOUJ I, RUIZ V, et al. Quantification and simulation of thermal decomposition reactions of Li-ion battery materials by simultaneous thermal analysis coupled with gas analysis[J]. Journal of Power Sources, 2019, 435(30): 226774. |
43 | XU K, ZHUANG G V, ALLEN J L, et al. Syntheses and characterization of lithium alkyl mono-and dicarbonates as components of surface films in Li-ion batteries[J]. The Journal of Physical Chemistry B, 2006, 110(15): 7708-7719. |
44 | 杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J/OL]. 储能科学与技术: 1-18[2023-06-27]. https://doi.org/10.19799/j.cnki. 2095-4239.2023-0287. |
GAO Q, ZHAO J, LI G. Research progress of fast-chaiging lithium-ion batteries[J/OL]. Energy Storage Science and Technology: 1-18[2023-06-27]. https: //doi.org/10.19799/j.cnki.2095-4239.2023-0287. | |
45 | ZHAO X C, YIN Y L, HU Y, et al. Electrochemical-thermal modeling of lithium plating/stripping of Li(Ni0.6Mn0.2Co0.2)O2/carbon lithium-ion batteries at subzero ambient temperatures[J]. Journal of Power Sources, 2019, 418: 61-73. |
46 | BIRKENMAIER C, BITZER B, HARZHEIM M, et al. Lithium plating on graphite negative electrodes: Innovative qualitative and quantitative investigation methods[J]. Journal of the Electrochemical Society, 2015, 162(14): A2646-A2650. |
47 | WALDMANN T, HOGG B I, WOHLFAHRT-MEHRENS M. Li plating as unwanted side reaction in commercial Li-ion cells-A review[J]. Journal of Power Sources, 2018, 384: 107-124. |
48 | YANG G J, ZHANG S M, WENG S T, et al. Anionic effect on enhancing the stability of a solid electrolyte interphase film for lithium deposition on graphite[J]. Nano Letters, 2021, 21(12): 5316-5323. |
49 | LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
50 | HAO F, VERMA A, MUKHERJEE P P. Mechanistic insight into dendrite-SEI interactions for lithium metal electrodes[J]. Journal of Materials Chemistry A, 2018, 6(40): 19664-19671. |
51 | YAN C, ZHANG Q A. Towards the intercalation and lithium plating mechanism for high safety and fast-charging lithium-ion batteries: A review[J]. Energy Lab, 2022, 1: 220011. |
52 | LI W X, JIE Y L, CHEN Y H, et al. Crossover effects of transition metal ions in high-voltage lithium metal batteries[J]. Nano Research, 2022: 1-8. |
53 | ABRAHAM D P, SPILA T, FURCZON M M, et al. Evidence of transition-metal accumulation on aged graphite anodes by SIMS[J]. Electrochemical and Solid-State Letters, 2008, 11(12): A226. |
54 | SHIN H, PARK J, SASTRY A M, et al. Degradation of the solid electrolyte interphase induced by the deposition of manganese ions[J]. Journal of Power Sources, 2015, 284: 416-427. |
55 | LI W D, KIM U H, DOLOCAN A, et al. Formation and inhibition of metallic lithium microstructures in lithium batteries driven by chemical crossover[J]. ACS Nano, 2017, 11(6): 5853-5863. |
56 | XIE Q M, CHEN J W, XING L D, et al. Revealing the critical effect of solid electrolyte interphase on the deposition and detriment of Co(Ⅱ) ions to graphite anode[J]. Journal of Energy Chemistry, 2022, 69: 389-396. |
57 | JURNG S, KIM H S, LEE J G, et al. Low-temperature characteristics and film-forming mechanism of elemental sulfur additive on graphite negative electrode[J]. Journal of the Electrochemical Society, 2015, 163(2): A223-A228. |
58 | LEE S M, KIM J, MOON J, et al. A cooperative biphasic MoOx-MoPx promoter enables a fast-charging lithium-ion battery[J]. Nature Communications, 2021, 12: 39. |
59 | LI F S, WU Y S, CHOU J, et al. A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes[J]. Advanced Materials, 2015, 27(1): 130-137. |
60 | OTA H, SAKATA Y, INOUE A, et al. Analysis of vinylene carbonate derived SEI layers on graphite anode[J]. Journal of the Electrochemical Society, 2004, 151(10): A1659. |
61 | JEON J, YOON S, PARK T, et al. Tuning glycolide as an SEI-forming additive for thermally robust Li-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(39): 21003-21008. |
62 | ESHETU G G, GRUGEON S, GACHOT G, et al. LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: Comparing thermal stabilities and identification of specific SEI-reinforcing additives[J]. Electrochimica Acta, 2013, 102: 133-141. |
63 | TAN J A, MATZ J, DONG P, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase[J]. Advanced Energy Materials, 2021, 11(16): 2100046. |
64 | JIANG H, LIU J E, WANG M M, et al. Stable rooted solid electrolyte interphase for lithium-ion batteries[J]. The Journal of Physical Chemistry Letters, 2021, 12(43): 10521-10531. |
65 | HE M F, GUO R, HOBOLD G M, et al. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(1): 73-79. |
66 | SUN C C, JI X, WENG S T, et al. 50C fast-charge Li-ion batteries using a graphite anode[J]. Advanced Materials, 2022, 34(43): e2206020. |
67 | ZHENG X Y, CAO Z, LUO W, et al. Solvation and interfacial engineering enable -40 ℃ operation of graphite/NCM batteries at energy density over 270 Wh/kg[J]. Advanced Materials, 2023, 35(10): e2210115. |
68 | QI W B, BEN L B, YU H L, et al. Improving the electrochemical cycling performance of anode materials via facile in situ surface deposition of a solid electrolyte layer[J]. Journal of Power Sources, 2019, 424: 150-157. |
69 | BHATTACHARYA S, RIAHI A R, ALPAS A T. Electrochemical cycling behaviour of lithium carbonate (Li2CO3) pre-treated graphite anodes-SEI formation and graphite damage mechanisms[J]. Carbon, 2014, 77: 99-112. |
70 | HENG S A, CAO Z, WANG Y, et al. In situ transformed solid electrolyte interphase by implanting a 4-vinylbenzoic acid nanolayer on the natural graphite surface[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 33408-33420. |
71 | LI H Q, ZHOU H S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future[J]. Chemical Communications, 2012, 48(9): 1201-1217. |
72 | NATARAJAN C, FUJIMOTO H, TOKUMITSU K, et al. Reduction of the irreversible capacity of a graphite anode by the CVD process[J]. Carbon, 2001, 39(9): 1409-1413. |
73 | KIM N, CHAE S, MA J, et al. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes[J]. Nature Communications, 2017, 8: 812. |
74 | SONG D, JO M R, LEE G H, et al. Bifunctional Li4Ti5O12 coating layer for the enhanced kinetics and stability of carbon anode for lithium rechargeable batteries[J]. Journal of Alloys and Compounds, 2014, 615: 220-226. |
75 | KIM D S, CHUNG D J, BAE J, et al. Surface engineering of graphite anode material with black TiO2- x for fast chargeable lithium ion battery[J]. Electrochimica Acta, 2017, 258: 336-342. |
[1] | 张青松, 包防卫, 牛江昊. 环境压力对锂电池热失控产气及爆炸风险的影响[J]. 储能科学与技术, 2023, 12(7): 2263-2270. |
[2] | 陈智伟, 张维戈, 张珺玮, 张言茹. 基于视觉特征的动力电池组综合健康评估及分筛方法[J]. 储能科学与技术, 2023, 12(7): 2211-2219. |
[3] | 张宇波, 王有元, 黄洞宁, 王子懿, 陈伟根. 面向变工况条件的锂离子电池寿命退化预测方法[J]. 储能科学与技术, 2023, 12(7): 2238-2245. |
[4] | 徐冲, 徐宁, 蒋志敏, 李中凯, 胡洋, 严红, 马国强. 锂离子电池产气机制及基于电解液的抑制策略[J]. 储能科学与技术, 2023, 12(7): 2119-2133. |
[5] | 陈钦佩, 王学辉, 米文忠. 电动汽车锂离子电池系统热失控气体毒害及爆炸特性研究[J]. 储能科学与技术, 2023, 12(7): 2256-2262. |
[6] | 昝文达, 张睿, 丁飞. 锂离子电池电化学模型发展与应用[J]. 储能科学与技术, 2023, 12(7): 2302-2318. |
[7] | 吴宜琨, 何杰, 杨乐, 宋维力, 陈浩森. 锂离子电池多物理场多尺度变形理论模型与计算方法[J]. 储能科学与技术, 2023, 12(7): 2141-2154. |
[8] | 管鸿盛, 钱诚, 徐炳辉, 孙博, 任羿. 融合自注意力机制与门控循环单元网络的宽工况锂离子电池SOC估计[J]. 储能科学与技术, 2023, 12(7): 2229-2237. |
[9] | 范茂松, 耿萌萌, 赵光金, 杨凯, 王放放, 刘皓. 基于多频点阻抗的梯次利用电池分选技术研究[J]. 储能科学与技术, 2023, 12(7): 2202-2210. |
[10] | 李晋, 王青松, 孔得朋, 王晓冬, 俞振华, 乐艳飞, 黄鑫炎, 胡振恺, 吴候福, 方华斌, 曹伟, 张少禹, 卓萍, 陈晔, 李紫婷, 梅文昕, 张越, 赵丽香, 唐亮, 黄宗侯, 陈篪, 刘彦辉, 储玉喜, 许晓元, 张晋, 李贻恺, 冯蓉, 杨标, 户波, 杨晓滢. 锂离子电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(7): 2282-2301. |
[11] | 郝增辉, 刘训良, 孟缘, 孟楠, 温治. 电极界面微观结构对固态锂离子电池性能的影响[J]. 储能科学与技术, 2023, 12(7): 2095-2104. |
[12] | 刘书琴, 王小燕, 张振东, 段振霞. 锂离子电池组液冷式热管理系统的设计及优化[J]. 储能科学与技术, 2023, 12(7): 2155-2165. |
[13] | 陈育新, 杨家沐, 练成, 刘洪来. 基于相场模型的锂电池电极浆料稳定涂布窗口分析[J]. 储能科学与技术, 2023, 12(7): 2185-2193. |
[14] | 杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J]. 储能科学与技术, 2023, 12(7): 2166-2184. |
[15] | 马敬轩, 宋宇航, 石爽, 吕娜伟, 尹康涌, 王桂荣, 杜开源, 金阳. 基于气压信号突变探测的液冷型磷酸铁锂电池模组热失控预警研究[J]. 储能科学与技术, 2023, 12(7): 2246-2255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||