储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2119-2133.doi: 10.19799/j.cnki.2095-4239.2023.0212
徐冲(), 徐宁, 蒋志敏, 李中凯, 胡洋, 严红, 马国强()
收稿日期:
2023-04-10
修回日期:
2023-05-20
出版日期:
2023-07-05
发布日期:
2023-07-25
通讯作者:
马国强
E-mail:xuchong01@sinochem.com;maguoqiang@sinochem.com
作者简介:
徐冲(1995—),男,硕士,工程师,研究方向为锂离子电池电解液,E-mail:xuchong01@sinochem.com;
基金资助:
Chong XU(), Ning XU, Zhimin JIANG, Zhongkai LI, Yang HU, Hong YAN, Guoqiang MA()
Received:
2023-04-10
Revised:
2023-05-20
Online:
2023-07-05
Published:
2023-07-25
Contact:
Guoqiang MA
E-mail:xuchong01@sinochem.com;maguoqiang@sinochem.com
摘要:
便携式设备、电动汽车和储能设施的快速发展对锂离子电池的成本、充电倍率、使用寿命和安全性等提出了更高要求。然而,锂离子电池在循环和存储过程中会产气,造成电池体积膨胀、极片/隔膜错位以及电池极化增加,是导致电池寿命衰减甚至引发安全问题的重要原因。本文从锂离子电池产气种类出发,总结了锂离子电池中H2、O2、烯烃、烷烃、CO2和CO 6类主要气体的产生机制以及电池温度、电压窗口、电极材料等因素对气体产生的影响,并讨论了这些气体产生与电池性能变化和电池安全之间的关系。此外,本文基于电解液视角提出了抑制策略,主要围绕提升电解液稳定性和构建稳固的电极/电解液界面两个维度展开。清除电池中的活性氧、痕量水和氢氟酸,降低溶剂中环状碳酸酯含量以及使用氟代溶剂均可以有效提升电解液稳定性,使用各类功能添加剂调控电极/电解液界面组分可以有效提升电池界面稳定性,最终达到抑制产气的效果。最后,本文提出了目前针对电池产气仍需解决的问题,为后续深入探究电池产气机理以及开发更有效的产气抑制策略进行了展望。
中图分类号:
徐冲, 徐宁, 蒋志敏, 李中凯, 胡洋, 严红, 马国强. 锂离子电池产气机制及基于电解液的抑制策略[J]. 储能科学与技术, 2023, 12(7): 2119-2133.
Chong XU, Ning XU, Zhimin JIANG, Zhongkai LI, Yang HU, Hong YAN, Guoqiang MA. Mechanisms of gas evolution and suppressing strategies based on the electrolyte in lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2119-2133.
1 | WOODY M, ARBABZADEH M, LEWIS G M, et al. Strategies to limit degradation and maximize Li-ion battery service lifetime—Critical review and guidance for stakeholders[J]. Journal of Energy Storage, 2020, 28: doi: 10. 1016/j. est. 2020. 101231. |
2 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
3 | 陈晓霞, 刘凯, 王保国. 高安全性锂电池电解液研究与应用[J]. 储能科学与技术, 2020, 9(2): 583-592. |
CHEN X X, LIU K, WANG B G. Research on high-safety electrolytes and their application in lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 583-592. | |
4 | KONG L C, LI Y, FENG W. Strategies to solve lithium battery thermal runaway: From mechanism to modification[J]. Electrochemical Energy Reviews, 2021, 4(4): 633-679. |
5 | HU D Z, SU Y F, CHEN L, et al. The mechanism of side reaction induced capacity fading of Ni-rich cathode materials for lithium ion batteries[J]. Journal of Energy Chemistry, 2021, 58: 1-8. |
6 | BAO Y H, HONG G Q, CHEN Y, et al. Customized kirigami electrodes for flexible and deformable lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 780-788. |
7 | KWADE A, HASELRIEDER W, LEITHOFF R, et al. Current status and challenges for automotive battery production technologies[J]. Nature Energy, 2018, 3(4): 290-300. |
8 | ZHANG S, MA J, HU Z L, et al. Identifying and addressing critical challenges of high-voltage layered ternary oxide cathode materials[J]. Chemistry of Materials, 2019, 31(16): 6033-6065. |
9 | GELDASA F T, KEBEDE M A, SHURA M W, et al. Identifying surface degradation, mechanical failure, and thermal instability phenomena of high energy density Ni-rich NCM cathode materials for lithium-ion batteries: A review[J]. RSC Advances, 2022, 12(10): 5891-5909. |
10 | 梁浩斌, 杜建华, 郝鑫, 等. 锂电池膨胀形成机制研究现状[J]. 储能科学与技术, 2021, 10(2): 647-657. |
LIANG H B, DU J H, HAO X, et al. A review of current research on the formation mechanism of lithium batteries[J]. Energy Storage Science and Technology, 2021, 10(2): 647-657. | |
11 | DING J F, XU R, YAN C, et al. A review on the failure and regulation of solid electrolyte interphase in lithium batteries[J]. Journal of Energy Chemistry, 2021, 59: 306-319. |
12 | CUI J, SHI C, ZHAO J B. Research progress on the effect of mechanical pressure on the performance of lithium batteries[J]. CIESC Journal, 2021, 72(7): 3511-3523. |
13 | LOULI A J, ELLIS L D, DAHN J R. Operando pressure measurements reveal solid electrolyte interphase growth to rank Li-ion cell performance[J]. Joule, 2019, 3(3): 745-761. |
14 | 张慧敏, 王京, 王一博, 等. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382. |
ZHANG H M, WANG J, WANG Y B, et al. Multiscale modeling of the SEI of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(2): 366-382. | |
15 | TAKENAKA N, BOUIBES A, YAMADA Y, et al. Frontiers in theoretical analysis of solid electrolyte interphase formation mechanism[J]. Advanced Materials, 2021, 33(37): 2100574. |
16 | HEISKANEN S K, KIM J, LUCHT B L.Generation and evolution of the solid electrolyte interphase of lithium-ion batteries[J]. Joule, 2019, 3(10): 2322-2333. |
17 | SHAN X Y, ZHONG Y, ZHANG L J, et al. A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: Challenges and perspectives[J]. The Journal of Physical Chemistry C, 2021, 125(35): 19060-19080. |
18 | LIU X, REN D S, HSU H J, et al. Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2(10): 2047-2064. |
19 | WANG Y, FENG X N, PENG Y, et al. Reductive gas manipulation at early self-heating stage enables controllable battery thermal failure[J]. Joule, 2022, 6(12): 2810-2820. |
20 | JONES P K, STIMMING U, LEE A A. Impedance-based forecasting of lithium-ion battery performance amid uneven usage[J]. Nature Communications, 2022, 13: 4806. |
21 | LI B, PAREKH M H, PALANISAMY M, et al. In situ thermal runaway detection in lithium-ion batteries with an integrated internal sensor[J]. ACS Applied Energy Materials, 2020, 3(8): 7997-8008. |
22 | LI W F, WANG H W, ZHANG Y J, et al. Flammability characteristics of the battery vent gas: A case of NCA and LFP lithium-ion batteries during external heating abuse[J]. Journal of Energy Storage, 2019, 24: 100775. |
23 | 石爽, 吕娜伟, 马敬轩, 等. 不同类型气体探测对磷酸铁锂电池储能舱过充安全预警有效性对比[J]. 储能科学与技术, 2022, 11(8): 2452-2462. |
SHI S, LYU N W, MA J X, et al. Comparative study on the effectiveness of different types of gas detection on the overcharge safety early warning of a lithium iron phosphate battery energy storage compartment[J]. Energy Storage Science and Technology, 2022, 11(8): 2452-2462. | |
24 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. |
25 | METZGER M, STREHLE B, SOLCHENBACH S, et al. Origin of H2 evolution in LIBs: H2O reduction vs. electrolyte oxidation[J]. Journal of the Electrochemical Society, 2016, 163(5): A798-A809. |
26 | GALUSHKIN N Е, YAZVINSKAYA N N, GALUSHKIN D N. Mechanism of gases generation during lithium-ion batteries cycling[J]. Journal of the Electrochemical Society, 2019, 166(6): A897-A908. |
27 | WANDT J, FREIBERG Ats, OGRODNIK A, et al. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries[J]. Materials Today, 2018, 21(8): 825-833. |
28 | ZHANG S S. Understanding of performance degradation of LiNi0.80Co0.10Mn0.10O2 cathode material operating at high potentials[J]. Journal of Energy Chemistry, 2020, 41: 135-141. |
29 | ZHANG J X, YANG J W, YANG L M, et al. Exploring the redox decomposition of ethylene carbonate-propylene carbonate in Li-ion batteries[J]. Materials Advances, 2021, 2(5): 1747-1751. |
30 | TENG X, ZHAN C, BAI Y, et al. In situ analysis of gas generation in lithium-ion batteries with different carbonate-based electrolytes[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 22751-22755. |
31 | HOBOLD G M, KHURRAM A, GALLANT B M. Operando gas monitoring of solid electrolyte interphase reactions on lithium[J]. Chemistry of Materials, 2020, 32(6): 2341-2352. |
32 | RINKEL B L D, VIVEK J P, GARCIA-ARAEZ N, et al. Two electrolyte decomposition pathways at nickel-rich cathode surfaces in lithium-ion batteries[J]. Energy & Environmental Science, 2022, 15(8): 3416-3438. |
33 | MAO C Y, RUTHER R E, GENG L X, et al. Evaluation of gas formation and consumption driven by crossover effect in high-voltage lithium-ion batteries with Ni-rich NMC cathodes[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43235-43243. |
34 | HATSUKADE T, SCHIELE A, HARTMANN P, et al. Origin of carbon dioxide evolved during cycling of nickel-rich layered NCM cathodes[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 38892-38899. |
35 | RENFREW S E, MCCLOSKEY B D. Quantification of surface oxygen depletion and solid carbonate evolution on the first cycle of LiNi0.6Mn0.2Co0.2O2 electrodes[J]. ACS Applied Energy Materials, 2019, 2(5): 3762-3772. |
36 | ELLIS L D, ALLEN J P, THOMPSON L M, et al. Quantifying, understanding and evaluating the effects of gas consumption in lithium-ion cells[J]. Journal of the Electrochemical Society, 2017, 164(14): A3518-A3528. |
37 | 谢宏, 黄锴, 杜进桥, 等. 锂离子电池电解液痕量水污染的超声表象[J]. 储能科学与技术, 2022, 11(12): 4030-4037 |
XIE H, HUANG K, DU J Q, et al. Studies on ultrasonic appearance of trace water contamination in lithium-ion battery electrolyte[J]. Energy Storage Science and Technology, 2022, 11(12): 4030-4037 | |
38 | WANG X Q, REN D S, LIANG H M, et al. Ni crossover catalysis: Truth of hydrogen evolution in Ni-rich cathode-based lithium-ion batteries[J]. Energy & Environmental Science, 2023, 16(3): 1200-1209. |
39 | ZHANG S S. Problems and their origins of Ni-rich layered oxide cathode materials[J]. Energy Storage Materials, 2020, 24: 247-254. |
40 | LYU Y C, WU X, WANG K, et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000982. |
41 | BOULINEAU A, SIMONIN L, COLIN J F, et al. First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries[J]. Nano Letters, 2013, 13(8): 3857-3863. |
42 | METZGER M, MARINO C, SICKLINGER J, et al. Anodic oxidation of conductive carbon and ethylene carbonate in high-voltage Li-ion batteries quantified by on-line electrochemical mass spectrometry[J]. Journal of the Electrochemical Society, 2015, 162(7): A1123-A1134. |
43 | JUNG R, METZGER M, MAGLIA F, et al. Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon[J]. The Journal of Physical Chemistry Letters, 2017, 8(19): 4820-4825. |
44 | RENFREW S E, MCCLOSKEY B D. The role of electrolyte in the first-cycle transformations of LiNi0.6Mn0.2Co0.2O2[J]. Journal of the Electrochemical Society, 2019, 166(13): A2762-A2768. |
45 | RAMAKRISHNAN S, PARK B, WU J, et al. Extended interfacial stability through simple acid rinsing in a Li-rich oxide cathode material[J]. Journal of the American Chemical Society, 2020, 142(18): 8522-8531. |
46 | RENFREW S E, KAUFMAN L A, MCCLOSKEY B D. Altering surface contaminants and defects influences the first-cycle outgassing and irreversible transformations of LiNi0.6Mn0.2Co0.2O2[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34913-34921. |
47 | RENFREW S E, MCCLOSKEY B D. Residual lithium carbonate predominantly accounts for first cycle CO2 and CO outgassing of Li-stoichiometric and Li-rich layered transition-metal oxides[J]. Journal of the American Chemical Society, 2017, 139(49): 17853-17860. |
48 | JUNG R, METZGER M, MAGLIA F, et al. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(7): A1361-A1377. |
49 | WU Q S, MCDOWELL M T, QI Y. Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries[J]. Journal of the American Chemical Society, 2023, 145(4): 2473-2484. |
50 | DAY R P, XIA J, PETIBON R, et al. Differential thermal analysis of Li-ion cells as an effective probe of liquid electrolyte evolution during aging[J]. Journal of the Electrochemical Society, 2015, 162(14): A2577-A2581. |
51 | YANG X W, WANG H W, LI M H, et al. Experimental study on thermal runaway behavior of lithium-ion battery and analysis of combustible limit of gas production[J]. Batteries, 2022, 8(11): 250. |
52 | WANG H B, XU H, ZHANG Z L, et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study[J]. eTransportation, 2022, 13: 100190. |
53 | HAN J G, KIM K, LEE Y, et al. Scavenging materials: Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries[J]. Advanced Materials, 2019, 31(20): 1804822. |
54 | SELF J, AIKEN C P, PETIBON R, et al. Survey of gas expansion in Li-ion NMC pouch cells[J]. Journal of the Electrochemical Society, 2015, 162(6): A796-A802. |
55 | WOTANGO A S, SU W N, LEGGESSE E G, et al. Improved interfacial properties of MCMB electrode by 1-(trimethylsilyl)imidazole as new electrolyte additive to suppress LiPF6 decomposition[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2410-2420. |
56 | KIM K, HWANG D, KIM S, et al. Cyclic aminosilane-based additive ensuring stable electrode-electrolyte interfaces in Li-ion batteries[J]. Advanced Energy Materials, 2020, 10(15): 2000012. |
57 | DENG B W, WANG H, GE W J, et al. Investigating the influence of high temperatures on the cycling stability of a LiNi0.6Co0.2Mn0.2O2 cathode using an innovative electrolyte additive[J]. Electrochimica Acta, 2017, 236: 61-71. |
58 | LIU G P, JIAO T P, CHENG Y, et al. Interfacial enhancement of silicon-based anode by a lactam-type electrolyte additive[J]. ACS Applied Energy Materials, 2021, 4(9): 10323-10332. |
59 | LIU G P, XU N B, ZOU Y, et al. Stabilizing Ni-rich LiNi0.83Co0.12Mn0.05O2 with cyclopentyl isocyanate as a novel electrolyte additive[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12069-12078. |
60 | SONG Y M, KIM C K, KIM K E, et al. Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi0.5Mn1 5O4 cathodes[J]. Journal of Power Sources, 2016, 302: 22-30. |
61 | YIM T, WOO S G, LIM S H, et al. 5 V-class high-voltage batteries with over-lithiated oxide and a multi-functional additive[J]. Journal of Materials Chemistry A, 2015, 3(11): 6157-6167. |
62 | ZHENG J M, XIAO J, GU M, et al. Interface modifications by anion receptors for high energy lithium ion batteries[J]. Journal of Power Sources, 2014, 250: 313-318. |
63 | WU Y, REN D S, LIU X, et al. High-voltage and high-safety practical lithium batteries with ethylene carbonate-free electrolyte[J]. Advanced Energy Materials, 2021, 11(47): 2102299. |
64 | KANG G H, ZHONG G, MA J B, et al. Weakly solvated EC-free linear alkyl carbonate electrolytes for Ni-rich cathode in rechargeable lithium battery[J]. iScience, 2022, 25(12): 105710. |
65 | WANG Y K, LI Z M, HOU Y P, et al. Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries[J]. Chemical Society Reviews, 2023, 52(8): 2713-2763. |
66 | 封迈, 陈楠, 陈人杰. 锂离子电池低温电解液的研究进展[J]. 储能科学与技术, 2023, 12(3): 792-807. |
FENG M, CHEN N, CHEN R J. Research progress of low-temperature electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 792-807. | |
67 | LI Q, LIU X S, HAN X, et al. Identification of the solid electrolyte interface on the Si/C composite anode with FEC as the additive[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14066-14075. |
68 | SANG P F, CHEN Q L, WANG D Y, et al. Organosulfur materials for rechargeable batteries: Structure, mechanism, and application[J]. Chemical Reviews, 2023, 123(4): 1262-1326. |
69 | 毛舒岚, 武倩, 王卓雅, 等. 三元NCM锂离子电池高电压电解质的研究进展[J]. 储能科学与技术, 2020, 9(2): 538-550. |
MAO S L, WU Q, WANG Z Y, et al. Research progress on high-voltage electrolytes for ternary NCM lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 538-550. | |
70 | LIU H D, NAYLOR A J, MENON A S, et al. Understanding the roles of tris(trimethylsilyl) phosphite (TMSPi) in LiNi0.8Mn0.1Co0.1O2 (NMC811)/silicon-graphite (Si-gr) lithium-ion batteries[J]. Advanced Materials Interfaces, 2020, 7(15): 2000277. |
71 | HAN S Y, LIU Y, ZHANG H, et al. Succinonitrile as a high-voltage additive in the electrolyte of LiNi0.5Co0.2Mn0.3O2/graphite full batteries[J]. Surface and Interface Analysis, 2020, 52(6): 364-373. |
72 | WANG A P, WANG L, LIANG H M, et al. Lithium difluorophosphate as a widely applicable additive to boost lithium-ion batteries: A perspective[J]. Advanced Functional Materials, 2023, 33(8): 2211958. |
73 | KANG S, PARK K, PARK S-H, et al. Unraveling the role of LiFSI electrolyte in the superior performance of graphite anodes for Li-ion batteries[J]. Electrochimica Acta, 2018, 259: 949-954. |
74 | 詹元杰, 武怿达, 马晓威, 等. 基于碳酸酯基电解液的4.5 V电池[J]. 储能科学与技术, 2020, 9(2): 319-330. |
ZHAN Y J, WU Y D, MA X W, et al. 4.5 V Li-ion battery with a carbonate ester-based electrolyte[J]. Energy Storage Science and Technology, 2020, 9(2): 319-330. | |
75 | WANG P, CUI X L, ZHAO D N, et al. Effects of soluble products decomposed from chelato-borate additives on formation of solid electrolyte interface layers[J]. Journal of Power Sources, 2022, 535: doi: 10. 1016/j. jpowsour. 2022. 231451. |
76 | 江依义, 沈旻, 宋半夏, 等. 双功能电解液添加剂对锂离子电池高温高电压性能的影响[J]. 无机材料学报, 2022, 37(7): 710-716. |
JIANG Y Y, SHEN M, SONG B X, et al. Effect of dual-functional electrolyte additive on high temperature and high voltage performance of Li-ion battery[J]. Journal of Inorganic Materials, 2022, 37(7): 710-716. | |
77 | ZHANG Z H, HU J G, HU Y, et al. Tri(2-furyl)phosphine-induced robust interphases for durable nickel-rich lithium-ion batteries[J]. Applied Surface Science, 2023, 624: 157027. |
78 | HU Y, ZHANG Z H, WANG H M. Fast-charging electrolyte: A multiple additives strategy with 1,3,2-dioxathiolane 2,2-dioxide and lithium difluorophosphate for commercial graphite/LiFePO4 pouch battery[J]. ChemistrySelect, 2022, 7(19): e202200740. |
79 | GUO L Y, HUANG F F, CAI M Z, et al. Organic-inorganic hybrid SEI induced by a new lithium salt for high-performance metallic lithium anodes[J]. ACS Applied Materials & Interfaces, 2021, 13(28): 32886-32893. |
[1] | 郝增辉, 刘训良, 孟缘, 孟楠, 温治. 电极界面微观结构对固态锂离子电池性能的影响[J]. 储能科学与技术, 2023, 12(7): 2095-2104. |
[2] | 刘书琴, 王小燕, 张振东, 段振霞. 锂离子电池组液冷式热管理系统的设计及优化[J]. 储能科学与技术, 2023, 12(7): 2155-2165. |
[3] | 张青松, 包防卫, 牛江昊. 环境压力对锂电池热失控产气及爆炸风险的影响[J]. 储能科学与技术, 2023, 12(7): 2263-2270. |
[4] | 陈智伟, 张维戈, 张珺玮, 张言茹. 基于视觉特征的动力电池组综合健康评估及分筛方法[J]. 储能科学与技术, 2023, 12(7): 2211-2219. |
[5] | 张宇波, 王有元, 黄洞宁, 王子懿, 陈伟根. 面向变工况条件的锂离子电池寿命退化预测方法[J]. 储能科学与技术, 2023, 12(7): 2238-2245. |
[6] | 陈钦佩, 王学辉, 米文忠. 电动汽车锂离子电池系统热失控气体毒害及爆炸特性研究[J]. 储能科学与技术, 2023, 12(7): 2256-2262. |
[7] | 昝文达, 张睿, 丁飞. 锂离子电池电化学模型发展与应用[J]. 储能科学与技术, 2023, 12(7): 2302-2318. |
[8] | 吴宜琨, 何杰, 杨乐, 宋维力, 陈浩森. 锂离子电池多物理场多尺度变形理论模型与计算方法[J]. 储能科学与技术, 2023, 12(7): 2141-2154. |
[9] | 管鸿盛, 钱诚, 徐炳辉, 孙博, 任羿. 融合自注意力机制与门控循环单元网络的宽工况锂离子电池SOC估计[J]. 储能科学与技术, 2023, 12(7): 2229-2237. |
[10] | 范茂松, 耿萌萌, 赵光金, 杨凯, 王放放, 刘皓. 基于多频点阻抗的梯次利用电池分选技术研究[J]. 储能科学与技术, 2023, 12(7): 2202-2210. |
[11] | 李晋, 王青松, 孔得朋, 王晓冬, 俞振华, 乐艳飞, 黄鑫炎, 胡振恺, 吴候福, 方华斌, 曹伟, 张少禹, 卓萍, 陈晔, 李紫婷, 梅文昕, 张越, 赵丽香, 唐亮, 黄宗侯, 陈篪, 刘彦辉, 储玉喜, 许晓元, 张晋, 李贻恺, 冯蓉, 杨标, 户波, 杨晓滢. 锂离子电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(7): 2282-2301. |
[12] | 张佳怡, 翁素婷, 王兆翔, 王雪锋. 石墨负极界面SEI膜与锂离子电池热失控[J]. 储能科学与技术, 2023, 12(7): 2105-2118. |
[13] | 陈育新, 杨家沐, 练成, 刘洪来. 基于相场模型的锂电池电极浆料稳定涂布窗口分析[J]. 储能科学与技术, 2023, 12(7): 2185-2193. |
[14] | 张贵萍, 闫筱炎, 王兵, 姚培新, 胡昌杰, 刘奕哲, 李纾黎, 薛建军. 长寿命循环的磷酸铁锂电池及材料、工艺[J]. 储能科学与技术, 2023, 12(7): 2134-2140. |
[15] | 杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J]. 储能科学与技术, 2023, 12(7): 2166-2184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||