储能科学与技术 ›› 2023, Vol. 12 ›› Issue (6): 2011-2021.doi: 10.19799/j.cnki.2095-4239.2023.0068

• 储能技术经济性分析 • 上一篇    下一篇

综合能源服务商储能业务目标用户主动识别方法

郭亚威(), 肖先勇, 郑子萱, 陈韵竹(), 陈旭林   

  1. 四川大学电气工程学院,四川 成都 610065
  • 收稿日期:2023-02-12 修回日期:2023-03-11 出版日期:2023-06-05 发布日期:2023-06-21
  • 通讯作者: 陈韵竹 E-mail:1131732612@qq.com;1159228002@qq.com
  • 作者简介:郭亚威(1998—),男,硕士研究生,研究方向为电能质量与优质供电,E-mail:1131732612@qq.com
  • 基金资助:
    国家自然科学基金项目(U2166209)

Active identification method for target users of an integrated energy service provider's energy storage business

Yawei GUO(), Xianyong XIAO, Zixuan ZHENG, Yunzhu CHEN(), Xulin CHEN   

  1. College of Electrical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
  • Received:2023-02-12 Revised:2023-03-11 Online:2023-06-05 Published:2023-06-21
  • Contact: Yunzhu CHEN E-mail:1131732612@qq.com;1159228002@qq.com

摘要:

能源转型背景下,储能要实现市场化、规模化的转变,但由于当前用户对自身需求认知不准确、且供应商多采用人工调研筛选的方式,导致用户筛选不准、主观性强、效率低,储能业务开展困难。为解决上述问题,本工作提出一种综合能源服务商(integrated energy service provider,IESP)用户侧储能业务目标用户的主动识别方法。首先,基于多源数据,构建了兼顾用户多元电力需求与服务价值特征的用户侧储能目标用户主动识别特征库,该特征既能反映用户的节能增效需求和电能质量需求等需求信息,又能反映用户是否值得供应商服务等供应信息;其次,针对传统量化方法劣化指标影响易被优势指标弥补,造成识别结果不准确,本工作建立了改进的GRA-TOPSIS用户特征量化模型;再次,根据量化结果,建立目标用户主动识别坐标系,可视化目标用户主动识别结果,为储能服务开展提供支撑,帮助IESP直观锁定目标用户;最后,通过实例分析验证了所提方法的可行性与有效性。

关键词: 多源数据, 用户侧储能, 主动识别, 逼近理想解排序, 灰色关联分析

Abstract:

In energy transformation, national policies require energy storage to achieve marketization and scalable transformation. However, due to inaccurate perceptions of users' needs, manual research and selection by suppliers; user selection is inaccurate, subjective, and inefficient, making the development of energy storage business challenging. To solve these issues, this paper proposes an active identification method for target users of the integrated energy service provider (IESP) user-side energy storage business. First, based on multi-source data, a user-side energy storage target user active identification feature library is constructed, considering users' multiple power demands and service value characteristics. This feature can reflect users' information demand, such as energy-saving, efficiency-enhancing demands and power quality demand, as well as supply information such as whether users are worth serving by the supplier. Secondly, we developed an improved GRA-TOPSIS user feature quantification model to address the limitation of traditional quantification methods, where the influence of the deterioration index is easily compensated by the advantage index, resulting in inaccurate recognition results. Thirdly, according to the quantitative results, we establish a target user activity identification coordinate system to visualize a target user activity identification results, which provides support for implementing energy storage services, and help IESP in intuitively identifying target user. Finally, the feasibility and effectiveness of the proposed method are verified through a case study.

Key words: multi-source data, user-side energy storage, active identification, technique for order preference by similarity to an ideal solution, gray relational analysis

中图分类号: