1 |
张青松, 赵洋, 刘添添. 荷电状态和电池排列对锂离子电池热失控传播的影响[J]. 储能科学与技术, 2022, 11(8): 2519-2525.
|
|
ZHANG Q S, ZHAO Y, LIU T T. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525.
|
2 |
赵春朋, 王青松, 余彦. 密闭空间中锂离子电池的热爆炸危险性[J]. 储能科学与技术, 2018, 7(3): 424-430.
|
|
ZHAO C P, WANG Q S, YU Y. Thermal explosion hazards of lithium-ion batteries in hermetic space[J]. Energy Storage Science and Technology, 2018, 7(3): 424-430.
|
3 |
KAPP E A, WROTH D S, CHAPIN J T. Analysis of thermal runaway incidents involving lithium batteries in U.S. commercial aviation[J]. Transportation Research Record: Journal of the Transportation Research Board, 2020, 2674(11): 584-592.
|
4 |
WILLIARD N, HENDRICKS C, SOOD B, et al. Evaluation of batteries for safe air transport[J]. Energies, 2016, 9(5): 340.
|
5 |
CHEN S C, WANG Z R, WANG J H, et al. Lower explosion limit of the vented gases from Li-ion batteries thermal runaway in high temperature condition[J]. Journal of Loss Prevention in the Process Industries, 2020, 63: doi: 10.1016/j.jlp.2019.103992.
|
6 |
HENRIKSEN M, VAAGSAETHER K, LUNDBERG J, et al. Explosion characteristics for Li-ion battery electrolytes at elevated temperatures[J]. Journal of Hazardous Materials, 2019, 371: 1-7.
|
7 |
WANG Z, YANG H, LI Y, et al. Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods[J]. Journal of Hazardous Materials, 2019, 379: doi: 10.1016/j.jhazmat.2019.06.007.
|
8 |
FU Y Y, LU S, LI K Y, et al. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter[J]. Journal of Power Sources, 2015, 273: 216-222.
|
9 |
ZHANG Q S, NIU J H, ZHAO Z H, et al. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states[J]. Journal of Energy Storage, 2022, 45: doi: 10.1016/j.est.2021.103759.
|
10 |
张青松, 曲奕润, 郝朝龙, 等. 三元锂离子电池热失控气体原位分析[J]. 高电压技术, 2022, 48(7): 2817-2825.
|
|
ZHANG Q S, QU Y R, HAO C L, et al. In-situ analysis of thermal runaway gas in ternary lithium-ion battery[J]. High Voltage Engineering, 2022, 48(7): 2817-2825.
|
11 |
FU Y Y, LU S, SHI L, et al. Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure[J]. Energy, 2018, 161: 38-45.
|
12 |
张青松, 刘添添, 赵洋. 受限空间环境压力对三元锂离子电池热失控影响[J]. 中国安全生产科学技术, 2021, 17(6): 36-40.
|
|
ZHANG Q S, LIU T T, ZHAO Y. Influence of environmental pressure in confined space on thermal runaway of ternary lithium ion battery[J]. Journal of Safety Science and Technology, 2021, 17(6): 36-40.
|
13 |
LI Y W, JIANG L H, HUANG Z H, et al. Pressure effect on the thermal runaway behaviors of lithium-ion battery in confined space[J]. Fire Technology, 2022: 1-19.
|
14 |
CHEN M Y, LIU J H, HE Y P, et al. Study of the fire hazards of lithium-ion batteries at different pressures[J]. Applied Thermal Engineering, 2017, 125: 1061-1074.
|
15 |
FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64.
|
16 |
STRAUSS F, TEO J H, SCHIELE A, et al. Gas evolution in lithium-ion batteries: Solid versus liquid electrolyte[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20462-20468.
|
17 |
GACHOT G, GRUGEON S, ESHETU G G, et al. Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis[J]. Electrochimica Acta, 2012, 83: 402-409.
|
18 |
GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633-3642.
|
19 |
ZOU K Y, LU S X, CHEN X, et al. Thermal and gas characteristics of large-format LiNi0.8Co0.1Mn0.1O2 pouch power cell during thermal runaway[J]. Journal of Energy Storage, 2021, 39: doi: 10.1016/j.est.2021.102609.
|
20 |
JIA Z Z, QIN P, LI Z, et al. Analysis of gas release during the process of thermal runaway of lithium-ion batteries with three different cathode materials[J]. Journal of Energy Storage, 2022, 50: doi: 10.1016/j.est.2022.104302.
|
21 |
ASTM E918-19.Standard practice for determining limits of flammability of chemicals at elevated temperature and pressure[S/OL]. America. [2022-07-01]. doi: 10.1520/E0918-19.
|
22 |
LI W F, WANG H W, ZHANG Y J, et al. Flammability characteristics of the battery vent gas: A case of NCA and LFP lithium-ion batteries during external heating abuse[J]. Journal of Energy Storage, 2019, 24: doi: 10.1016/j.est.2019.100775.
|