储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2263-2270.doi: 10.19799/j.cnki.2095-4239.2023.0192

• 储能锂离子电池系统关键技术专刊 • 上一篇    下一篇

环境压力对锂电池热失控产气及爆炸风险的影响

张青松(), 包防卫(), 牛江昊   

  1. 中国民航大学民航热灾害防控与应急重点实验室,天津 300300
  • 收稿日期:2023-03-30 修回日期:2023-04-20 出版日期:2023-07-05 发布日期:2023-07-25
  • 通讯作者: 包防卫 E-mail:nkzqsong@126.com;bfw1118@126.com
  • 作者简介:张青松(1977—),男,博士,教授,博导,主要从事锂电池火灾防控理论与技术的研究工作,E-mail:nkzqsong@126.com
  • 基金资助:
    国家自然科学基金民航联合基金重点支持项目资助(U2033204);中国民航大学研究生科研创新资助项目(2022YJS009)

Risk analysis method of thermal runaway gas explosion in lithium-ion batteries

Qingsong ZHANG(), Fangwei BAO(), Jiangjao NIU   

  1. Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
  • Received:2023-03-30 Revised:2023-04-20 Online:2023-07-05 Published:2023-07-25
  • Contact: Fangwei BAO E-mail:nkzqsong@126.com;bfw1118@126.com

摘要:

为研究航空变压环境下锂离子电池热失控所释放气体种类及其安全性,采用自主搭建密闭式变压实验舱开展相关实验,在不同压力环境下(101 kPa、70 kPa、30 kPa)对100%荷电状态(SOC)三元锂离子电池热失控特性进行研究,记录锂电池在热失控过程中的温度及密闭实验舱的压力变化,比较不同压力环境下的热失控特征。把得到的热失控原位气体分别通入气相色谱-质谱联用仪和自主搭建的锂电池爆炸极限测试平台,对锂电池热失控产气分别进行成分分析及爆炸风险分析。研究结果表明:随着环境压力的降低,电池越早触发热失控,其产生高温和气体冲击的危险性也随之降低。不同压力环境下产生的气体成分及含量也有所不同,随着环境压力的降低,CO2含量减少,而不饱和烃C4H8、C4H6、C5H10等气体含量增加,而这也正是低压环境下爆炸风险更大的原因。锂离子电池热失控气体爆炸上下限范围随压力降低而增大,从而造成更大的风险。研究结果可为锂离子电池在航空领域安全性研究提供理论依据,为电池的安全防控提供数据参考。

关键词: 环境压力, 锂离子电池, 热失控, 气体检测, 爆炸风险

Abstract:

To study the types and safety of thermal runaway gas released by lithium-ion batteries in an aviation transformer environment, an independent closed-type transformer laboratory was constructed for conducting related experiments. The thermal runaway characteristics of terrapin lithium-ion batteries with 100% state of charge were investigated under different pressure environments (101, 70, and 30 kPa). The temperatures of the lithium batteries during thermal runaway and the pressure changes within the closed laboratory chamber were recorded to compare the thermal runaway characteristics under varying pressure conditions. The resulting thermal runaway gas was analyzed using a gas chromatograph-mass spectrometer, and an independent explosion limit test platform for lithium batteries was developed. Composition analysis and explosion risk analysis were performed to assess the thermal runaway gas produced by lithium batteries. The findings indicate that as the ambient pressure decreases, thermal runaway is triggered earlier; however, the risk of high temperature and gas shock is reduced. Additionally, the composition and content of gases produced vary with different pressure environments. As environmental pressure decreases, the content of CO2 decreases, while the content of unsaturated hydrocarbons such as C4H8, C4H6, and C5H10 increases. This is also the reason for the greater risk of explosion in low-pressure environments. The range of thermal runaway gas explosion for lithium-ion batteries expands with decreasing pressure, resulting in a greater risk. These research results provide a theoretical basis for the safety research of lithium-ion batteries in aviation and offer data references for the safety prevention and control of lithium batteries.

Key words: environmental pressure, lithium-ion battery, thermal runaway, gas detection, explosion risk

中图分类号: