Sodium-ion batteries have emerged as a promising energy storage technology with global interest. However, the limited specific capacity of hard carbon, the primary anode material for sodium-ion batteries, restrains further improvement in energy density for full cells. In contrast, phosphorus-based anode materials have gained attention for high-performance sodium-ion batteries owing to their abundance and high theoretical specific capacity. The review summarizes some efficient strategies to improve structural stability and electrochemical performance by exploring the recent relevant literature. Black phosphorus can be easily prepared through mechanical methods and complexed with carbon materials such as graphene, multi-walled carbon nanotubes, and ketjen black. However, it is important to consider the formation of microscopic chemical bonds to enhance structural integrity and sodium storage reversibility. The chemical bonding between the surfaces of carbon material and black phosphorus plays a crucial role in achieving these advancements. In addition, the combination of conductive polymer and two-dimensional compounds with black phosphorus offers a pathway for optimizing material properties and electrode microstructures, further enhancing the electrochemical performance of sodium-ion batteries. Finally, the development prospect of black phosphorus-based anode material for sodium-ion batteries is proposed, highlighting their potential in advancing energy storage.
Keywords:sodium-ion battery
;
anode material
;
phosphorus carbon composite material
;
black phosphorus
ZHANG Ding. Research progress of black phosphorus-based anode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(8): 2482-2490
Fig. 1
(a) Scheme for the structures of BPC composite;(b) TEM images of the BPC composite;(c)—(d) Cyclic performance diagram of BPC at different current densities;(e)—(f) Rate performance of a Na0.66Ni0.26Zn0.07Mn0.67O2/P cell[24]
黑磷是磷的三种异形体中最稳定的,它可以与白磷或红磷在一定的条件下相互转化。1914年,Bridgman[15]在200 ℃下研究高压(1.2 GPa)条件对白磷熔点的影响时获得了黑磷。黑磷有正交、菱形、简单立方和无定形四种晶体结构,在常温常压下,黑磷晶格具备正交结构[16],每个磷原子与三个相邻的磷原子共价结合。由于sp3杂化,原子层中的磷原子不共面[17],黑磷的空间群为Cmca,a=3.313Å,b=10.473Å,c=4.374Å,它具有高载流子迁移率、高理论容量、良好的热稳定性以及高度各向异性[18-19]。在与其他二维材料异质堆叠时,黑磷表现出了光致发光猝灭效应[20]。作为二次电池的负极材料,得益于它出色的高电荷迁移率,使得黑磷在储能电极材料时表现出独特的电子特性。研究发现,低层黑磷的电荷迁移率与厚度有关[18, 21]。由于范德华相互作用的影响,黑磷的各层堆叠在一起,这使得黑磷较为容易通过机械的方法获得单层结构的黑磷[22]。自从2014年二维黑磷材料用在晶体管中以来[18],科研人员对二维黑磷的应用开展了多方探讨。作为一种二维半导体材料,其带隙可调、导电性好;而且也具有超高的储钠理论容量。Hembram等人[23]基于第一性原理计算提出了黑磷钠化的原子机制,黑磷的层状结构一直保持到Na0.25P的组成,当Na含量超过0.25时,插层过程转变成合金化过程。当在Na0.25P结构中加入两个以上的Na原子形成Na0.28P结构时,P—P键的解离过程开始,进一步钠化作用最终会导致层状Na x P结构形成非晶相。随着钠化的进一步进行,大部分哑铃型P2会变成孤立的P原子。虽然黑磷的储钠历程与红磷不同,但是最终产物相同,因此具有同样的理论储钠比容量(2596 mAh/g)。
Fig. 2
(a) Specific capability and coulombic efficiency of the 4-RBP anode at current density of 1 A/g[25];(b) The specific capacity of 4-RBP at different current density[25]; (c) Schematic illustration of the fabrication of the NTO/C-BP hybrids[26];(d) Electrochemical measurements of NTO/C and NTO/C-BP: Cycling performance at 200 mA/g[26]; (e) Performance of 100 cycles at current densities of 100 mA/g, 200 mA/g, and 500 mA/g[29]
Fig. 3
(a) Schematic description of the BP/rGO synthesis; (b) Cycling performance of the BP/rGO anodes at charge and discharge current densities of 1 and 40 A/g [31]
Fig. 4
(a) Cyclic performance of E-BP/PEDOT and E-BP electrodes at different current densities[32]; (b) Schematic diagram of the sodiation of BP-G and BP-G/PANI electrodes[33]; (c) Rct of BP, BP-G, and BP-G/PANI[33]; (d) SEM images of cross section of BP-G/PANI and BP-G electrodes before and after cycling[33]; (e) Cyclic performance of BP-G/PANI at different current densities[33]
导电高分子材料与黑磷复合可以增强钠离子电池的循环性能和放电比容量,而高分子材料也可以作为电极黏结剂,缓冲黑磷的体积膨胀,从而改善钠离子电池的性能。在2021年,Callegari等人[34]开发出了新型的脲嘧啶酮(UPy)-远螺旋体系和与聚(环氧乙烷)相关的聚合物(UPyPEG n UPy)作为黏结剂。具有多重氢键的自主自愈的黏结剂,能有效地克服黑磷由体积膨胀/收缩引起机械损伤而使容量急剧衰减的问题,该种聚合物可以协助阳极内的钠离子传输,并且降低了电荷转移电阻,从而增强电化学动力学。基于此种黏结剂具有更好的附着力、缓冲性能和自发损伤修复的能力,使SIBs在电流密度高于3.5 A/g时仍然能正常工作,这种黏结剂虽然对SIBs电极的循环性能和稳定性都有显著的有益影响,但是还需要额外的工作来满足SIBs的商业要求。
2.3 黑磷与新型二维材料构成的复合材料
利用化学性质稳定的二维盖层形成的异质结构可有效抑制黑磷表面降解。在2020年,Guo等人[35]通过将磷烯和Ti3C2T x MXene胶体水溶液以一定质量比制备了BP/MXene复合材料,互补的二维(2D)材料堆叠成混合结构,并将其用作钠离子储能材料。二维异质结构Ti3C2T x MXene中的氟末端与钠形成NaF,促进了电子和钠离子的迁移,并且含有氟末端的MXene有利于形成稳定的SEI层,SEI层可以有效地抑制活性物质与电解质之间的反应,提高了库仑效率。通过密度泛函理论(DFT)计算表明,在磷烯/MXene异质结构中,特别是在磷烯/Ti3C2F2中,钠的扩散动力学也显著提升。
Fig. 5
(a) Schematic explanation for the MoS2 nanosheets on a BP nanosheets support in the MoS2/BP composite; (b) Cycling stability of MoS2/BP at 1 A/g in comparison with MoS2 and BP electrodes; (c) Long-term cycling stability of the MoS2/BP composite at 10 A/g; (d) Anti-static charge-discharge performance of full battery at 0.2 A/g [37]
KIM H, HONG J, PARK Y U, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Advanced Functional Materials, 2015, 25(4): 534-541.
ZHANG Y F, LI M, HUANG F B, et al. 3D porous Sb-Co nanocomposites as advanced anodes for sodium-ion batteries and potassium-ion batteries[J]. Applied Surface Science, 2020, 499: 143907.
YU Z X, LI X F, YAN B, et al. Rational design of flower-like tin sulfide @ reduced graphene oxide for high performance sodium ion batteries[J]. Materials Research Bulletin, 2017, 96: 516-523.
PARK Y, SHIN D S, WOO S H, et al. Sodium terephthalate as an organic anode material for sodium ion batteries[J]. Advanced Materials, 2012, 24(26): 3562-3567.
SANTHOSHKUMAR P, SHAJI N, NANTHAGOPAL M, et al. Multichannel red phosphorus with a nanoporous architecture: A novel anode material for sodium-ion batteries[J]. Journal of Power Sources, 2020, 470: 228459.
QIAN J F, WU X Y, CAO Y L, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries[J]. Angewandte Chemie International Edition, 2013, 52(17): 4633-4636.
ZHOU J B, LIU X Y, CAI W L, et al. Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries[J]. Advanced Materials, 2017, 29(29): 1700214.
FU Y Q, WEI Q L, ZHANG G X, et al. Batteries: Advanced phosphorus-based materials for lithium/sodium-ion batteries: Recent developments and future perspectives (adv. energy mater. 13/2018)[J]. Advanced Energy Materials, 2018, 8(13): 1870057.
KIM Y, PARK Y, CHOI A, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries[J]. Advanced Materials, 2013, 25(22): 3045-3049.
LI W J, CHOU S L, WANG J Z, et al. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage[J]. Nano Letters, 2013, 13(11): 5480-5484.
SONG J X, YU Z X, GORDIN M L, et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries[J]. Nano Letters, 2014, 14(11): 6329-6335.
SUN J, LEE H W, PASTA M, et al. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries[J]. Energy Storage Materials, 2016, 4: 130-136.
LI Y Y, HU Z X, LIN S H, et al. Giant anisotropic Raman response of encapsulated ultrathin black phosphorus by uniaxial strain[J]. Advanced Functional Materials, 2017, 27(19): 1600986.
YUAN J T, NAJMAEI S, ZHANG Z H, et al. Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus[J]. ACS Nano, 2015, 9(1): 555-563.
XIA F N, WANG H, JIA Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics[J]. Nature Communications, 2014, 5: 4458.
TIOUITCHI G, ALI M A, BENYOUSSEF A, et al. An easy route to synthesize high-quality black phosphorus from amorphous red phosphorus[J]. Materials Letters, 2019, 236: 56-59.
HEMBRAM K P S S, JUNG H, YEO B C, et al. Unraveling the atomistic sodiation mechanism of black phosphorus for sodium ion batteries by first-principles calculations[J]. The Journal of Physical Chemistry C, 2015, 119(27): 15041-15046.
XU G L, CHEN Z H, ZHONG G M, et al. Nanostructured black phosphorus/ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries[J]. Nano Letters, 2016, 16(6): 3955-3965.
LIU H W, TAO L, ZHANG Y Q, et al. Bridging covalently functionalized black phosphorus on graphene for high-performance sodium-ion battery[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 36849-36856.
SONG T B, CHEN H, XU Q J, et al. Black phosphorus stabilizing Na2Ti3O7/C each other with an improved electrochemical property for sodium-ion storage[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 37163-37171.
XU Y L, PENG B, MULDER F M. A high-rate and ultrastable sodium ion anode based on a novel Sn4P3-P@Graphene nanocomposite[J]. Advanced Energy Materials, 2018, 8(3): 1701847.
HAGHIGHAT-SHISHAVAN S, NAZARIAN-SAMANI M, NAZARIAN-SAMANI M, et al. Strong, persistent superficial oxidation-assisted chemical bonding of black phosphorus with multiwall carbon nanotubes for high-capacity ultradurable storage of lithium and sodium[J]. Journal of Materials Chemistry A, 2018, 6(21): 10121-10134.
LI M Y, MURALIDHARAN N, MOYER K, et al. Solvent mediated hybrid 2D materials: Black phosphorus-graphene heterostructured building blocks assembled for sodium ion batteries[J]. Nanoscale, 2018, 10(22): 10443-10449.
RAMIREDDY T, XING T, RAHMAN M M, et al. Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(10): 5572-5584.
LIU Y H, LIU Q Z, ZHANG A Y, et al. Room-temperature pressure synthesis of layered black phosphorus-graphene composite for sodium-ion battery anodes[J]. ACS Nano, 2018, 12(8): 8323-8329.
ZHANG Y, SUN W P, LUO Z Z, et al. Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries[J]. Nano Energy, 2017, 40: 576-586.
JIN H C, ZHANG T M, CHUANG C H, et al. Synergy of black phosphorus-graphite-polyaniline-based ternary composites for stable high reversible capacity Na-ion battery anodes[J]. ACS Applied Materials & Interfaces, 2019, 11(18): 16656-16661.
CALLEGARI D, COLOMBI S, NITTI A, et al. Autonomous self-healing strategy for stable sodium-ion battery: A case study of black phosphorus anodes[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13170-13182.
SU J C, XIAO B, JIA Z H. A first principle study of black phosphorene/N-doped graphene heterostructure: Electronic, mechanical and interface properties[J]. Applied Surface Science, 2020, 528: 146962.
ZHANG C R, LIANG T T, DONG H L, et al. Interfacial electron modulation of MoS2/black phosphorus heterostructure toward high-rate and high-energy density half/full sodium-ion batteries[J]. Materials Chemistry Frontiers, 2021, 5(17): 6639-6647.
WANG Y W, TIAN W, ZHANG H J, et al. Black phosphorene/NP heterostructure as a novel anode material for Li/Na-ion batteries[J]. Physical Chemistry Chemical Physics: PCCP, 2022, 24(33): 19697-19704.
(a) Scheme for the structures of BPC composite;(b) TEM images of the BPC composite;(c)—(d) Cyclic performance diagram of BPC at different current densities;(e)—(f) Rate performance of a Na0.66Ni0.26Zn0.07Mn0.67O2/P cell[24]Fig. 1
黑磷是磷的三种异形体中最稳定的,它可以与白磷或红磷在一定的条件下相互转化.1914年,Bridgman[15]在200 ℃下研究高压(1.2 GPa)条件对白磷熔点的影响时获得了黑磷.黑磷有正交、菱形、简单立方和无定形四种晶体结构,在常温常压下,黑磷晶格具备正交结构[16],每个磷原子与三个相邻的磷原子共价结合.由于sp3杂化,原子层中的磷原子不共面[17],黑磷的空间群为Cmca,a=3.313Å,b=10.473Å,c=4.374Å,它具有高载流子迁移率、高理论容量、良好的热稳定性以及高度各向异性[18-19].在与其他二维材料异质堆叠时,黑磷表现出了光致发光猝灭效应[20].作为二次电池的负极材料,得益于它出色的高电荷迁移率,使得黑磷在储能电极材料时表现出独特的电子特性.研究发现,低层黑磷的电荷迁移率与厚度有关[18, 21].由于范德华相互作用的影响,黑磷的各层堆叠在一起,这使得黑磷较为容易通过机械的方法获得单层结构的黑磷[22].自从2014年二维黑磷材料用在晶体管中以来[18],科研人员对二维黑磷的应用开展了多方探讨.作为一种二维半导体材料,其带隙可调、导电性好;而且也具有超高的储钠理论容量.Hembram等人[23]基于第一性原理计算提出了黑磷钠化的原子机制,黑磷的层状结构一直保持到Na0.25P的组成,当Na含量超过0.25时,插层过程转变成合金化过程.当在Na0.25P结构中加入两个以上的Na原子形成Na0.28P结构时,P—P键的解离过程开始,进一步钠化作用最终会导致层状Na x P结构形成非晶相.随着钠化的进一步进行,大部分哑铃型P2会变成孤立的P原子.虽然黑磷的储钠历程与红磷不同,但是最终产物相同,因此具有同样的理论储钠比容量(2596 mAh/g). ...
... [24]Fig. 1
黑磷是磷的三种异形体中最稳定的,它可以与白磷或红磷在一定的条件下相互转化.1914年,Bridgman[15]在200 ℃下研究高压(1.2 GPa)条件对白磷熔点的影响时获得了黑磷.黑磷有正交、菱形、简单立方和无定形四种晶体结构,在常温常压下,黑磷晶格具备正交结构[16],每个磷原子与三个相邻的磷原子共价结合.由于sp3杂化,原子层中的磷原子不共面[17],黑磷的空间群为Cmca,a=3.313Å,b=10.473Å,c=4.374Å,它具有高载流子迁移率、高理论容量、良好的热稳定性以及高度各向异性[18-19].在与其他二维材料异质堆叠时,黑磷表现出了光致发光猝灭效应[20].作为二次电池的负极材料,得益于它出色的高电荷迁移率,使得黑磷在储能电极材料时表现出独特的电子特性.研究发现,低层黑磷的电荷迁移率与厚度有关[18, 21].由于范德华相互作用的影响,黑磷的各层堆叠在一起,这使得黑磷较为容易通过机械的方法获得单层结构的黑磷[22].自从2014年二维黑磷材料用在晶体管中以来[18],科研人员对二维黑磷的应用开展了多方探讨.作为一种二维半导体材料,其带隙可调、导电性好;而且也具有超高的储钠理论容量.Hembram等人[23]基于第一性原理计算提出了黑磷钠化的原子机制,黑磷的层状结构一直保持到Na0.25P的组成,当Na含量超过0.25时,插层过程转变成合金化过程.当在Na0.25P结构中加入两个以上的Na原子形成Na0.28P结构时,P—P键的解离过程开始,进一步钠化作用最终会导致层状Na x P结构形成非晶相.随着钠化的进一步进行,大部分哑铃型P2会变成孤立的P原子.虽然黑磷的储钠历程与红磷不同,但是最终产物相同,因此具有同样的理论储钠比容量(2596 mAh/g). ...
... [25];(b) 4-RBP在不同电流密度下的比容量[25];(c) NTO/C-BP杂化示意图[26];(d) NTO/C和NTO/C-BP的电化学测试:在200 mA/g时的循环性能[26];(e) 在100 mA/g、200 mA/g、500 mA/g的电流密度下循环100次的循环性能[29](a) Specific capability and coulombic efficiency of the 4-RBP anode at current density of 1 A/g[25];(b) The specific capacity of 4-RBP at different current density[25]; (c) Schematic illustration of the fabrication of the NTO/C-BP hybrids[26];(d) Electrochemical measurements of NTO/C and NTO/C-BP: Cycling performance at 200 mA/g[26]; (e) Performance of 100 cycles at current densities of 100 mA/g, 200 mA/g, and 500 mA/g[29]Fig. 2
... [25];(c) NTO/C-BP杂化示意图[26];(d) NTO/C和NTO/C-BP的电化学测试:在200 mA/g时的循环性能[26];(e) 在100 mA/g、200 mA/g、500 mA/g的电流密度下循环100次的循环性能[29](a) Specific capability and coulombic efficiency of the 4-RBP anode at current density of 1 A/g[25];(b) The specific capacity of 4-RBP at different current density[25]; (c) Schematic illustration of the fabrication of the NTO/C-BP hybrids[26];(d) Electrochemical measurements of NTO/C and NTO/C-BP: Cycling performance at 200 mA/g[26]; (e) Performance of 100 cycles at current densities of 100 mA/g, 200 mA/g, and 500 mA/g[29]Fig. 2
... [25];(b) The specific capacity of 4-RBP at different current density[25]; (c) Schematic illustration of the fabrication of the NTO/C-BP hybrids[26];(d) Electrochemical measurements of NTO/C and NTO/C-BP: Cycling performance at 200 mA/g[26]; (e) Performance of 100 cycles at current densities of 100 mA/g, 200 mA/g, and 500 mA/g[29]Fig. 2
... [25]; (c) Schematic illustration of the fabrication of the NTO/C-BP hybrids[26];(d) Electrochemical measurements of NTO/C and NTO/C-BP: Cycling performance at 200 mA/g[26]; (e) Performance of 100 cycles at current densities of 100 mA/g, 200 mA/g, and 500 mA/g[29]Fig. 2
(a) Specific capability and coulombic efficiency of the 4-RBP anode at current density of 1 A/g[25];(b) The specific capacity of 4-RBP at different current density[25]; (c) Schematic illustration of the fabrication of the NTO/C-BP hybrids[26];(d) Electrochemical measurements of NTO/C and NTO/C-BP: Cycling performance at 200 mA/g[26]; (e) Performance of 100 cycles at current densities of 100 mA/g, 200 mA/g, and 500 mA/g[29]Fig. 2
... [26];(e) 在100 mA/g、200 mA/g、500 mA/g的电流密度下循环100次的循环性能[29](a) Specific capability and coulombic efficiency of the 4-RBP anode at current density of 1 A/g[25];(b) The specific capacity of 4-RBP at different current density[25]; (c) Schematic illustration of the fabrication of the NTO/C-BP hybrids[26];(d) Electrochemical measurements of NTO/C and NTO/C-BP: Cycling performance at 200 mA/g[26]; (e) Performance of 100 cycles at current densities of 100 mA/g, 200 mA/g, and 500 mA/g[29]Fig. 2
... [26];(d) Electrochemical measurements of NTO/C and NTO/C-BP: Cycling performance at 200 mA/g[26]; (e) Performance of 100 cycles at current densities of 100 mA/g, 200 mA/g, and 500 mA/g[29]Fig. 2
(a) Specific capability and coulombic efficiency of the 4-RBP anode at current density of 1 A/g[25];(b) The specific capacity of 4-RBP at different current density[25]; (c) Schematic illustration of the fabrication of the NTO/C-BP hybrids[26];(d) Electrochemical measurements of NTO/C and NTO/C-BP: Cycling performance at 200 mA/g[26]; (e) Performance of 100 cycles at current densities of 100 mA/g, 200 mA/g, and 500 mA/g[29]Fig. 2
... [31](a) Schematic description of the BP/rGO synthesis; (b) Cycling performance of the BP/rGO anodes at charge and discharge current densities of 1 and 40 A/g [31]Fig. 32.2 黑磷/导电高分子复合材料
... [32];(b) BP-G和BP-G/PANI电极的钠化示意图[33];(c) BP、BP-G和BP-G/PANI的电荷转移电阻[33];(d) 循环前后BP-G/PANI和BP-G电极的横截面SEM图像[33];(e) 在不同电流密度下BP-G/PANI的循环性能[33](a) Cyclic performance of E-BP/PEDOT and E-BP electrodes at different current densities[32]; (b) Schematic diagram of the sodiation of BP-G and BP-G/PANI electrodes[33]; (c) Rct of BP, BP-G, and BP-G/PANI[33]; (d) SEM images of cross section of BP-G/PANI and BP-G electrodes before and after cycling[33]; (e) Cyclic performance of BP-G/PANI at different current densities[33]Fig. 4
... [32]; (b) Schematic diagram of the sodiation of BP-G and BP-G/PANI electrodes[33]; (c) Rct of BP, BP-G, and BP-G/PANI[33]; (d) SEM images of cross section of BP-G/PANI and BP-G electrodes before and after cycling[33]; (e) Cyclic performance of BP-G/PANI at different current densities[33]Fig. 4
(a) Cyclic performance of E-BP/PEDOT and E-BP electrodes at different current densities[32]; (b) Schematic diagram of the sodiation of BP-G and BP-G/PANI electrodes[33]; (c) Rct of BP, BP-G, and BP-G/PANI[33]; (d) SEM images of cross section of BP-G/PANI and BP-G electrodes before and after cycling[33]; (e) Cyclic performance of BP-G/PANI at different current densities[33]Fig. 4
... [33];(d) 循环前后BP-G/PANI和BP-G电极的横截面SEM图像[33];(e) 在不同电流密度下BP-G/PANI的循环性能[33](a) Cyclic performance of E-BP/PEDOT and E-BP electrodes at different current densities[32]; (b) Schematic diagram of the sodiation of BP-G and BP-G/PANI electrodes[33]; (c) Rct of BP, BP-G, and BP-G/PANI[33]; (d) SEM images of cross section of BP-G/PANI and BP-G electrodes before and after cycling[33]; (e) Cyclic performance of BP-G/PANI at different current densities[33]Fig. 4
... [33];(e) 在不同电流密度下BP-G/PANI的循环性能[33](a) Cyclic performance of E-BP/PEDOT and E-BP electrodes at different current densities[32]; (b) Schematic diagram of the sodiation of BP-G and BP-G/PANI electrodes[33]; (c) Rct of BP, BP-G, and BP-G/PANI[33]; (d) SEM images of cross section of BP-G/PANI and BP-G electrodes before and after cycling[33]; (e) Cyclic performance of BP-G/PANI at different current densities[33]Fig. 4
... [33](a) Cyclic performance of E-BP/PEDOT and E-BP electrodes at different current densities[32]; (b) Schematic diagram of the sodiation of BP-G and BP-G/PANI electrodes[33]; (c) Rct of BP, BP-G, and BP-G/PANI[33]; (d) SEM images of cross section of BP-G/PANI and BP-G electrodes before and after cycling[33]; (e) Cyclic performance of BP-G/PANI at different current densities[33]Fig. 4
... [33]; (c) Rct of BP, BP-G, and BP-G/PANI[33]; (d) SEM images of cross section of BP-G/PANI and BP-G electrodes before and after cycling[33]; (e) Cyclic performance of BP-G/PANI at different current densities[33]Fig. 4
... [33]; (d) SEM images of cross section of BP-G/PANI and BP-G electrodes before and after cycling[33]; (e) Cyclic performance of BP-G/PANI at different current densities[33]Fig. 4
... 导电高分子材料与黑磷复合可以增强钠离子电池的循环性能和放电比容量,而高分子材料也可以作为电极黏结剂,缓冲黑磷的体积膨胀,从而改善钠离子电池的性能.在2021年,Callegari等人[34]开发出了新型的脲嘧啶酮(UPy)-远螺旋体系和与聚(环氧乙烷)相关的聚合物(UPyPEG n UPy)作为黏结剂.具有多重氢键的自主自愈的黏结剂,能有效地克服黑磷由体积膨胀/收缩引起机械损伤而使容量急剧衰减的问题,该种聚合物可以协助阳极内的钠离子传输,并且降低了电荷转移电阻,从而增强电化学动力学.基于此种黏结剂具有更好的附着力、缓冲性能和自发损伤修复的能力,使SIBs在电流密度高于3.5 A/g时仍然能正常工作,这种黏结剂虽然对SIBs电极的循环性能和稳定性都有显著的有益影响,但是还需要额外的工作来满足SIBs的商业要求. ...
1
... 利用化学性质稳定的二维盖层形成的异质结构可有效抑制黑磷表面降解.在2020年,Guo等人[35]通过将磷烯和Ti3C2T x MXene胶体水溶液以一定质量比制备了BP/MXene复合材料,互补的二维(2D)材料堆叠成混合结构,并将其用作钠离子储能材料.二维异质结构Ti3C2T x MXene中的氟末端与钠形成NaF,促进了电子和钠离子的迁移,并且含有氟末端的MXene有利于形成稳定的SEI层,SEI层可以有效地抑制活性物质与电解质之间的反应,提高了库仑效率.通过密度泛函理论(DFT)计算表明,在磷烯/MXene异质结构中,特别是在磷烯/Ti3C2F2中,钠的扩散动力学也显著提升. ...
... [37](a) Schematic explanation for the MoS2 nanosheets on a BP nanosheets support in the MoS2/BP composite; (b) Cycling stability of MoS2/BP at 1 A/g in comparison with MoS2 and BP electrodes; (c) Long-term cycling stability of the MoS2/BP composite at 10 A/g; (d) Anti-static charge-discharge performance of full battery at 0.2 A/g [37]Fig. 5