[1]
ZENG X Q, LI M, ABD EL-HADY D, et al. Commercialization of lithium battery technologies for electric vehicles[J]. Advanced Energy Materials, 2019, 9(27): 1900161.
[本文引用: 1]
[2]
DUFFNER F, KRONEMEYER N, TÜBKE J, et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure[J]. Nature Energy, 2021, 6(2): 123-134.
[本文引用: 1]
[3]
ZHU Z X, JIANG T L, ALI M, et al. Rechargeable batteries for grid scale energy storage[J]. Chemical Reviews, 2022, 122(22): 16610-16751.
[本文引用: 1]
[4]
FRITH JAMES T, LACEY MATTHEW J, ULDERICO U. A non-academic perspective on the future of lithium-based batteries[J]. Nature Communications, 2023, 14(1): 420.
[本文引用: 1]
[5]
LU Y X, RONG X H, HU Y S, et al. Research and development of advanced battery materials in China[J]. Energy Storage Materials, 2019, 23: 144-153.
[本文引用: 1]
[6]
LIU J, BAO Z N, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186.
[本文引用: 1]
[7]
TALAIE E, BONNICK P, SUN X Q, et al. Methods and protocols for electrochemical energy storage materials research[J]. Chemistry of Materials, 2017, 29(1): 90-105.
[本文引用: 2]
[8]
RACCICHINI R, AMORES M, HINDS G. Critical review of the use of reference electrodes in Li-ion batteries: A diagnostic perspective[J]. Batteries, 2019, 5(1): 12.
[本文引用: 3]
[9]
ZHANG S S. Is Li/graphite half-cell suitable for evaluating lithiation rate capability of graphite electrode?[J]. Journal of the Electrochemical Society, 2020, 167(10): 100510.
[本文引用: 1]
[10]
ENDER M, WEBER A, ELLEN I T. Analysis of three-electrode setups for AC-impedance measurements on lithium-ion cells by FEM simulations[J]. Journal of the Electrochemical Society, 2011, 159(2): A128-A136.
[本文引用: 2]
[11]
QIN N, JIN L M, XING G G, et al. Decoupling accurate electrochemical behaviors for high-capacity electrodes via reviving three-electrode vehicles[J]. Advanced Energy Materials, 2023, 13(11): 2204077.
[本文引用: 4]
[12]
LANGDON J, MANTHIRAM A. Crossover effects in lithium-metal batteries with a localized high concentration electrolyte and high-nickel cathodes[J]. Advanced Materials, 2022, 34(41): 2205188.
[本文引用: 1]
[13]
XIAO Y, XU R, YAN C, et al. A toolbox of reference electrodes for lithium batteries[J]. Advanced Functional Materials, 2022, 32(13): 2108449.
[本文引用: 2]
[14]
BLYR A, SIGALA C, AMATUCCI G, et al. Self-discharge of LiMn2 O 4 /C Li-ion cells in their discharged state: Understanding by means of three-electrode measurements[J]. Journal of the Electrochemical Society, 1998, 145(1): 194-209.
[本文引用: 2]
[15]
GAO J H, CHEN Y Z, YANG Y, et al. Research progress of reference electrode for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10: 987.
[本文引用: 1]
[16]
INZELT G, LEWENSTAM A, SCHOLZ F. Handbook of reference electrodes[M]. New York: Springer, 2013.
[本文引用: 2]
[17]
SMITH T J, STEVENSON K J. Reference electrodes[M]//Handbook of Electrochemistry. Amsterdam: Elsevier, 2007: 73-110.
[本文引用: 1]
[18]
LEWANDOWSKI A, SWIDERSKA-MOCEK A. Lithium-metal potential in Li+ containing ionic liquids[J]. Journal of Applied Electrochemistry, 2010, 40(3): 515-524.
[本文引用: 2]
[19]
BURROWS B, JASINSKI R. The Li/Li+ reference electrode in propylene carbonate[J]. Journal of the Electrochemical Society, 1968, 115(4): 365.
[本文引用: 2]
[20]
JOHNSON C S, DEES D W. In Proc of the Symposium on lithium Batteries. Reference electrodes for solid polymer electrolytes[C]. United States: Battery Division of the Electrochemical Society, 1993.
[21]
KASAJIMA T, NISHIKIORI T, NOHIRA T, et al. Electrochemical window and the characteristics of ( α + β ) Al-Li alloy reference electrode for a LiBr-KBr-CsBr eutectic melt[J]. Journal of the Electrochemical Society, 2004, 151(11): E335.
[22]
ZHOU J, NOTTEN P H L. Development of reliable lithium microreference electrodes for long-term in situ studies of lithium-based battery systems[J]. Journal of the Electrochemical Society, 2004, 151(12): A2173.
[本文引用: 3]
[23]
GÓMEZ-CÁMER J L, NOVÁK P. Electrochemical impedance spectroscopy: Understanding the role of the reference electrode[J]. Electrochemistry Communications, 2013, 34: 208-210.
[24]
SOLCHENBACH S, PRITZL D, KONG E J Y, et al. A gold micro-reference electrode for impedance and potential measurements in lithium ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(10): A2265-A2272.
[本文引用: 3]
[25]
COSTARD J, ENDER M, WEISS M, et al. Three-electrode setups for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2016, 164(2): A80-A87.
[26]
SIMON F J, BLUME L, HANAUER M, et al. Development of a wire reference electrode for lithium all-solid-state batteries with polymer electrolyte: FEM simulation and experiment[J]. Journal of the Electrochemical Society, 2018, 165(7): A1363-A1371.
[本文引用: 3]
[27]
YI S Z, WANG B, CHEN Z A, et al. A study on LiFePO4 /graphite cells with built-in Li4 Ti5 O12 reference electrodes[J]. RSC Advances, 2018, 8(33): 18597-18603.
[本文引用: 1]
[28]
EPDING B, BRODA A, RUMBERG B, et al. Development of durable 3-electrode lithium-ion pouch cells with LTO reference mesh: Aging and performance studies[J]. Journal of the Electrochemical Society, 2019, 166(8): A1550-A1557.
[本文引用: 1]
[29]
SEDLMEIER C, SCHUSTER R, SCHRAMM C, et al. A micro-reference electrode for electrode-resolved impedance and potential measurements in all-solid-state battery pouch cells and its application to the study of indium-lithium anodes[J]. Journal of the Electrochemical Society, 2023, 170(3): 030536.
[本文引用: 1]
[30]
WALDMANN T, HOGG B I, KASPER M, et al. Interplay of operational parameters on lithium deposition in lithium-ion cells: Systematic measurements with reconstructed 3-electrode pouch full cells[J]. Journal of the Electrochemical Society, 2016, 163(7): A1232-A1238.
[本文引用: 2]
[31]
NAM Y J, PARK K H, OH D Y, et al. Diagnosis of failure modes for all-solid-state Li-ion batteries enabled by three-electrode cells[J]. Journal of Materials Chemistry A, 2018, 6(30): 14867-14875.
[32]
WANG J K, LIU J H, WANG L, et al. The significance of imperceptible current flowing through the lithium reference electrode in lithium ion batteries[J]. Journal of Power Sources, 2022, 546: 231953.
[本文引用: 2]
[33]
WEN B H, DENG Z, TSAI P C, et al. Ultrafast ion transport at a cathode-electrolyte interface and its strong dependence on salt solvation[J]. Nature Energy, 2020, 5(8): 578-586.
[本文引用: 1]
[34]
ABRAHAM D P, POPPEN S D, JANSEN A N, et al. Application of a lithium-tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells[J]. Electrochimica Acta, 2004, 49(26): 4763-4775.
[本文引用: 1]
[35]
MCSHANE E J, BENEDEK P, NIEMANN V A, et al. A versatile Li0.5 FePO4 reference electrode for nonaqueous electrochemical conversion technologies[J]. ACS Energy Letters, 2023, 8(1): 230-235.
[本文引用: 1]
[36]
PARK K, KIM D M, HA K H, et al. Correlation between redox potential and solvation structure in biphasic electrolytes for Li metal batteries[J]. Advanced Science, 2022, 9(33): 2203443.
[本文引用: 1]
[37]
BOYLE D T, KIM S C, OYAKHIRE S T, et al. Correlating kinetics to cyclability reveals thermodynamic origin of lithium anode morphology in liquid electrolytes[J]. Journal of the American Chemical Society, 2022, 144(45): 20717-20725.
[本文引用: 1]
[38]
KO S, OBUKATA T, SHIMADA T, et al. Electrode potential influences the reversibility of lithium-metal anodes[J]. Nature Energy, 2022, 7(12): 1217-1224.
[本文引用: 3]
[39]
CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
[本文引用: 2]
[40]
LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206.
[本文引用: 1]
[41]
KIM S C, KONG X, VILÁ R A, et al. Potentiometric measurement to probe solvation energy and its correlation to lithium battery cyclability[J]. Journal of the American Chemical Society, 2021, 143(27): 10301-10308.
[本文引用: 1]
[42]
GALVEZ-ARANDA D E, SEMINARIO J M. Li-metal anode in dilute electrolyte LiFSI/TMP: Electrochemical stability using ab initio molecular dynamics[J]. The Journal of Physical Chemistry C, 2020, 124(40): 21919-21934.
[本文引用: 1]
[43]
WU J Y, YUAN L X, LI Z, et al. Air-stable means more: Designing air-defendable lithium metals for safe and stable batteries[J]. Materials Horizons, 2020, 7(10): 2619-2634.
[本文引用: 1]
[44]
XIAO Y, XU R, YAN C, et al. Waterproof lithium metal anode enabled by cross-linking encapsulation[J]. Science Bulletin, 2020, 65(11): 909-916.
[本文引用: 1]
[45]
CHO H M, PARK Y J, YEON J W, et al. In-depth investigation on two- and three-electrode impedance measurements in terms of the effect of the counter electrode[J]. Electronic Materials Letters, 2009, 5(4): 169-178.
[本文引用: 1]
[46]
JUAREZ-ROBLES D, CHEN C F, BARSUKOV Y, et al. Impedance evolution characteristics in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(4): A837-A847.
[47]
DOLLÉ M, ORSINI F, GOZDZ A S, et al. Development of reliable three-electrode impedance measurements in plastic Li-ion batteries[J]. Journal of the Electrochemical Society, 2001, 148(8): A851.
[48]
LEVI M D, DARGEL V, SHILINA Y, et al. Impedance spectra of energy-storage electrodes obtained with commercial three-electrode cells: Some sources of measurement artefacts[J]. Electrochimica Acta, 2014, 149: 126-135.
[本文引用: 1]
[49]
LA MANTIA F, WESSELLS C D, DESHAZER H D, et al. Reliable reference electrodes for lithium-ion batteries[J]. Electrochemistry Communications, 2013, 31: 141-144.
[本文引用: 1]
[50]
MOZHZHUKHINA N, CALVO E J. Perspective—The correct assessment of standard potentials of reference electrodes in non-aqueous solution[J]. Journal of the Electrochemical Society, 2017, 164(12): A2295-A2297.
[本文引用: 1]
[51]
ARMSTRONG C G, HOGUE R W, TOGHILL K E. Characterisation of the ferrocene/ferrocenium ion redox couple as a model chemistry for non-aqueous redox flow battery research[J]. Journal of Electroanalytical Chemistry, 2020, 872: 114241.
[本文引用: 1]
[52]
MURDOCK B E, ARMSTRONG C G, SMITH D E, et al. Misreported non-aqueous reference potentials: The battery research endemic[J]. Joule, 2022, 6(5): 928-934.
[本文引用: 1]
[53]
AN S J, LI J L, DANIEL C, et al. Design and demonstration of three-electrode pouch cells for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(7): A1755-A1764.
[本文引用: 2]
[54]
LOVERIDGE M J, LAIN M J, JOHNSON I D, et al. Towards high capacity Li-ion batteries based on silicon-graphene composite anodes and sub-micron V-doped LiFePO4 cathodes[J]. Scientific Reports, 2016, 6: 37787.
[本文引用: 1]
[55]
HERTLE J, WALTHER F, MOGWITZ B, et al. Miniaturization of reference electrodes for solid-state lithium-ion batteries[J]. Journal of the Electrochemical Society, 2023, 170(4): 040519.
[本文引用: 1]
[56]
ENDER M, ILLIG J, IVERS-TIFFÉE E. Three-electrode setups for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2016, 164(2): A71-A79.
[本文引用: 1]
[57]
MCTURK E, BIRKL C R, ROBERTS M R, et al. Minimally invasive insertion of reference electrodes into commercial lithium-ion pouch cells[J]. ECS Electrochemistry Letters, 2015, 4(12): A145-A147.
[本文引用: 3]
[58]
LI Y L, HAN X B, FENG X N, et al. Errors in the reference electrode measurements in real lithium-ion batteries[J]. Journal of Power Sources, 2021, 481: 228933.
[本文引用: 1]
[59]
CHU Z Y, FENG X N, LIAW B, et al. Testing lithium-ion battery with the internal reference electrode: An insight into the blocking effect[J]. Journal of the Electrochemical Society, 2018, 165(14): A3240-A3248.
[本文引用: 3]
[60]
HOBOLD G M, LOPEZ J, GUO R, et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes[J]. Nature Energy, 2021, 6(10): 951-960.
[本文引用: 1]
[61]
RUTZ D, BAUER I, BRAUCHLE F, et al. Designing a reference electrode-An approach to fabricate laser perforated reference electrodes for lithium-ion batteries[J]. Electrochimica Acta, 2023, 441: 141768.
[本文引用: 1]
[62]
PARK C M, KIM J H, KIM H, et al. Li-alloy based anode materials for Li secondary batteries[J]. Chemical Society Reviews, 2010, 39(8): 3115-3141.
[本文引用: 1]
[63]
KOLESNIKOV A, KOLEK M, DOHMANN J F, et al. Galvanic corrosion of lithium-powder-based electrodes[J]. Advanced Energy Materials, 2020, 10(15): 2000017.
[本文引用: 1]
[64]
LIN D C, LIU Y Y, LI Y B, et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism[J]. Nature Chemistry, 2019, 11(4): 382-389.
[本文引用: 1]
[65]
LIU F, XU R, WU Y C, et al. Dynamic spatial progression of isolated lithium during battery operations[J]. Nature, 2021, 600(7890): 659-663.
[本文引用: 1]
[66]
SOMERVILLE L, FERRARI S, LAIN M, et al. An In-situ reference electrode insertion method for commercial 18650-type cells[J]. Batteries, 2018, 4(2): 18.
[本文引用: 2]
[67]
NAGASUBRAMANIAN G. Two- and three-electrode impedance studies on 18650 Li-ion cells[J]. Journal of Power Sources, 2000, 87(1/2): 226-229.
[68]
WU Q W, LU W Q, PRAKASH J. Characterization of a commercial size cylindrical Li-ion cell with a reference electrode[J]. Journal of Power Sources, 2000, 88(2): 237-242.
[本文引用: 1]
[69]
RODRIGUES M T F, KALAGA K, TRASK S E, et al. Fast charging of Li-ion cells: Part I. using Li/Cu reference electrodes to probe individual electrode potentials[J]. Journal of the Electrochemical Society, 2019, 166(6): A996-A1003.
[本文引用: 1]
[70]
RODRIGUES M T F, SON S B, COLCLASURE A M, et al. How fast can a Li-ion battery be charged? determination of limiting fast charging conditions[J]. ACS Applied Energy Materials, 2021, 4(2): 1063-1068.
[本文引用: 1]
[71]
CHANG G H, CHOI H U, KANG S, et al. Characterization of limiting factors of an all-solid-state Li-ion battery using an embedded indium reference electrode[J]. Ionics, 2020, 26(3): 1555-1561.
[本文引用: 1]
[72]
JANSEN A N, DEES D W, ABRAHAM D P, et al. Low-temperature study of lithium-ion cells using a Liy Sn micro-reference electrode[J]. Journal of Power Sources, 2007, 174(2): 373-379.
[本文引用: 1]
[73]
ITAGAKI M, HONDA K, HOSHI Y, et al. In-situ EIS to determine impedance spectra of lithium-ion rechargeable batteries during charge and discharge cycle[J]. Journal of Electroanalytical Chemistry, 2015, 737: 78-84.
[本文引用: 1]
[74]
LIU P, WANG J, HICKS-GARNER J, et al. Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses[J]. Journal of the Electrochemical Society, 2010, 157(4): A499.
[本文引用: 1]
[75]
DELACOURT C, RIDGWAY P L, SRINIVASAN V, et al. Measurements and simulations of electrochemical impedance spectroscopy of a three-electrode coin cell design for Li-ion cell testing[J]. Journal of the Electrochemical Society, 2014, 161(9): A1253-A1260.
[本文引用: 1]
[76]
MÜHLBAUER M J, PETZ D, BARAN V, et al. Inhomogeneous distribution of lithium and electrolyte in aged Li-ion cylindrical cells[J]. Journal of Power Sources, 2020, 475: 228690.
[本文引用: 1]
[77]
SADKOWSKI A, DIARD J P. On the Fletcher's two-terminal equivalent network of a three-terminal electrochemical cell[J]. Electrochimica Acta, 2010, 55(6): 1907-1911.
[本文引用: 1]
[78]
FLETCHER S. The two-terminal equivalent network of a three-terminal electrochemical cell[J]. Electrochemistry Communications, 2001, 3(12): 692-696.
[本文引用: 1]
[79]
LIU D Q, QIAN K, HE Y B, et al. Positive film-forming effect of fluoroethylene carbonate (FEC) on high-voltage cycling with three-electrode LiCoO2 /Graphite pouch cell[J]. Electrochimica Acta, 2018, 269: 378-387.
[本文引用: 1]
[80]
BELT J R, BERNARDI D M, UTGIKAR V. Development and use of a lithium-metal reference electrode in aging studies of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(6): A1116-A1126.
[本文引用: 1]
[81]
SCHINDLER S, BAUER M, PETZL M, et al. Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells[J]. Journal of Power Sources, 2016, 304: 170-180.
[本文引用: 1]
[82]
SIEG J, BANDLOW J, MITSCH T, et al. Fast charging of an electric vehicle lithium-ion battery at the limit of the lithium deposition process[J]. Journal of Power Sources, 2019, 427: 260-270.
[本文引用: 1]
[83]
PRITZL D, LANDESFEIND J, SOLCHENBACH S, et al. An analysis protocol for three-electrode Li-ion battery impedance spectra: Part Ⅱ. analysis of a graphite anode cycled vs . LNMO[J]. Journal of the Electrochemical Society, 2018, 165(10): A2145-A2153.
[本文引用: 1]
[84]
WU M S, CHIANG P C J, LIN J C. Electrochemical investigations on advanced lithium-ion batteries by three-electrode measurements[J]. Journal of the Electrochemical Society, 2005, 152(1): A47.
[本文引用: 1]
[85]
YAN C, XU R, QIN J L, et al. Inside cover: 4.5 V high-voltage rechargeable batteries enabled by the reduction of polarization on the lithium metal anode[J]. Angewandte Chemie International Edition, 2019, 58(43): 15164.
[本文引用: 1]
[86]
YUE X Y, YAO Y X, ZHANG J, et al. The raw mixed conducting interphase affords effective prelithiation in working batteries[J]. Angewandte Chemie International Edition, 2022, 61(29): 202205697.
[本文引用: 1]
[87]
SHI P, HOU L P, JIN C B, et al. A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes[J]. Journal of the American Chemical Society, 2022, 144(1): 212-218.
[本文引用: 3]
[88]
CAI W L, YAN C, YAO Y X, et al. Rapid lithium diffusion in Order@Disorder pathways for fast-charging graphite anodes[J]. Small Structures, 2020, 1(1): 2000010.
[本文引用: 1]
[89]
YAO Y X, CHEN X A, YAN C, et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte[J]. Angewandte Chemie International Edition, 2021, 60(8): 4090-4097.
[本文引用: 1]
[90]
LINWANG D, TIANYU F, SHIWEI S, et al. Nondestructive lithium plating online detection for lithium-ion batteries: A review [J]. Energy Storage Science and Technology, 12(1): 263-277.
[本文引用: 1]
[91]
沈馨, 张睿, 程新兵, 等. 锂枝晶的原位观测及生长机制研究进展[J]. 储能科学与技术, 2017, 6(3): 418-432.
[本文引用: 1]
SHEN X, ZHANG R, CHENG X B, et al. Recent progress on in situ observation and growth mechanism of lithium metal dendrites[J]. Energy Storage Science and Technology, 2017, 6(3): 418-432.
[本文引用: 1]
[92]
WALDMANN T, HOGG B I, WOHLFAHRT-MEHRENS M. Li plating as unwanted side reaction in commercial Li-ion cells - A review[J]. Journal of Power Sources, 2018, 384: 107-124.
[本文引用: 1]
[93]
XU L, YANG Y, XIAO Y, et al. In-situ determination of onset lithium plating for safe Li-ion batteries[J]. Journal of Energy Chemistry, 2022, 67: 255-262.
[本文引用: 1]
[94]
XU L, XIAO Y, YANG Y, et al. Operando quantified lithium plating determination enabled by dynamic capacitance measurement in working Li-ion batteries[J]. Angewandte Chemie (International Ed in English), 2022, 61(39): e202210365.
[本文引用: 3]
[95]
XU L, XIAO Y, YANG Y, et al. In situ Li-plating diagnosis for fast-charging Li-ion batteries enabled by relaxation-time detection[J]. Advanced Materials, 2023, 35(42): doi: 10.1002/adma.202301881
[本文引用: 1]
[96]
XU R, ZHANG S, SHEN X, et al. Unlocking the polarization and reversibility limitations for stable low-temperature lithium metal anodes[J]. Small Structures, 2023, 4(7): doi: 10.1002/sstr.202370017
[本文引用: 3]
[97]
YAO Y X, CHEN X A, YAO N, et al. Frontispiece: Unlocking charge transfer limitations for extreme fast charging of Li-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(4): 2214828.
[本文引用: 1]
[98]
JIN C B, YAO N, XIAO Y, et al. Taming solvent-solute interaction accelerates interfacial kinetics in low-temperature lithium-metal batteries[J]. Advanced Materials, 2023, 35(3): 2208340.
[本文引用: 1]
[99]
AHMED Z, ROBERTS A J, AMIETSZAJEW T. Ti-based reference electrodes for inline implementation into lithium-ion pouch cells[J]. Energy Technology, 2021, 9(10): 2100602.
[本文引用: 1]
[100]
YU Y C, WANG S T, MA D L, et al. Recent progress on laser manufacturing of microsize energy devices on flexible substrates[J]. JOM, 2018, 70(9): 1816-1822.
[本文引用: 1]
[101]
PANG Y K, CAO Y T, CHU Y H, et al. Additive manufacturing of batteries[J]. Advanced Functional Materials, 2020, 30(1): 1906244.
[本文引用: 1]
[102]
YAO N, CHEN X A, FU Z H, et al. Applying classical, ab initio , and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries[J]. Chemical Reviews, 2022, 122(12): 10970-11021.
[本文引用: 1]
1
... 锂离子电池是消费、动力和新型储能领域的主流选择[1 -2 ] ,其应用促进了可再生能源的并网和利用,为“双碳”目标的实现以及可持续社会的发展作出了突出贡献[3 ] .在日益增长的高能量密度需求下[4 ] ,以金属锂为负极的锂金属电池因其极高的能量密度潜力而被视作下一代电池的终极选择[5 -6 ] .不论是目前已经商业化的锂离子电池还是研发中的锂金属电池,通常都是由正负极构成的两电极体系,因此全电池信号耦合了正极和负极的信息,使锂电池成为黑箱[7 ] .如此便无法获知单一电极的特性,给电池的开发带来了困难,电池整体的健康状态也难以确定[8 ] ,极大地遏制了电池性能的发挥并埋下了安全隐患.为解决该难题,研究学者常常会采用半电池或对称电池构型,将对电极作为参比电极来解耦工作电极性质[9 -10 ] .然而,上述构型的两电极属性决定了其无法排除对电极的干扰,极化、交叉污染等因素的影响在所难免[11 -12 ] .此外,对称电池的组装条件苛刻,往往需要预先活化电极,再拆出重新装配,难以确保实验的一致性.而整合了参比电极的三电极体系则能很好地解决上述问题——解耦和定量两大功能使其可以单独研究每个电极的特性及其对电池整体性能的影响[13 ] . ...
1
... 锂离子电池是消费、动力和新型储能领域的主流选择[1 -2 ] ,其应用促进了可再生能源的并网和利用,为“双碳”目标的实现以及可持续社会的发展作出了突出贡献[3 ] .在日益增长的高能量密度需求下[4 ] ,以金属锂为负极的锂金属电池因其极高的能量密度潜力而被视作下一代电池的终极选择[5 -6 ] .不论是目前已经商业化的锂离子电池还是研发中的锂金属电池,通常都是由正负极构成的两电极体系,因此全电池信号耦合了正极和负极的信息,使锂电池成为黑箱[7 ] .如此便无法获知单一电极的特性,给电池的开发带来了困难,电池整体的健康状态也难以确定[8 ] ,极大地遏制了电池性能的发挥并埋下了安全隐患.为解决该难题,研究学者常常会采用半电池或对称电池构型,将对电极作为参比电极来解耦工作电极性质[9 -10 ] .然而,上述构型的两电极属性决定了其无法排除对电极的干扰,极化、交叉污染等因素的影响在所难免[11 -12 ] .此外,对称电池的组装条件苛刻,往往需要预先活化电极,再拆出重新装配,难以确保实验的一致性.而整合了参比电极的三电极体系则能很好地解决上述问题——解耦和定量两大功能使其可以单独研究每个电极的特性及其对电池整体性能的影响[13 ] . ...
1
... 锂离子电池是消费、动力和新型储能领域的主流选择[1 -2 ] ,其应用促进了可再生能源的并网和利用,为“双碳”目标的实现以及可持续社会的发展作出了突出贡献[3 ] .在日益增长的高能量密度需求下[4 ] ,以金属锂为负极的锂金属电池因其极高的能量密度潜力而被视作下一代电池的终极选择[5 -6 ] .不论是目前已经商业化的锂离子电池还是研发中的锂金属电池,通常都是由正负极构成的两电极体系,因此全电池信号耦合了正极和负极的信息,使锂电池成为黑箱[7 ] .如此便无法获知单一电极的特性,给电池的开发带来了困难,电池整体的健康状态也难以确定[8 ] ,极大地遏制了电池性能的发挥并埋下了安全隐患.为解决该难题,研究学者常常会采用半电池或对称电池构型,将对电极作为参比电极来解耦工作电极性质[9 -10 ] .然而,上述构型的两电极属性决定了其无法排除对电极的干扰,极化、交叉污染等因素的影响在所难免[11 -12 ] .此外,对称电池的组装条件苛刻,往往需要预先活化电极,再拆出重新装配,难以确保实验的一致性.而整合了参比电极的三电极体系则能很好地解决上述问题——解耦和定量两大功能使其可以单独研究每个电极的特性及其对电池整体性能的影响[13 ] . ...
1
... 锂离子电池是消费、动力和新型储能领域的主流选择[1 -2 ] ,其应用促进了可再生能源的并网和利用,为“双碳”目标的实现以及可持续社会的发展作出了突出贡献[3 ] .在日益增长的高能量密度需求下[4 ] ,以金属锂为负极的锂金属电池因其极高的能量密度潜力而被视作下一代电池的终极选择[5 -6 ] .不论是目前已经商业化的锂离子电池还是研发中的锂金属电池,通常都是由正负极构成的两电极体系,因此全电池信号耦合了正极和负极的信息,使锂电池成为黑箱[7 ] .如此便无法获知单一电极的特性,给电池的开发带来了困难,电池整体的健康状态也难以确定[8 ] ,极大地遏制了电池性能的发挥并埋下了安全隐患.为解决该难题,研究学者常常会采用半电池或对称电池构型,将对电极作为参比电极来解耦工作电极性质[9 -10 ] .然而,上述构型的两电极属性决定了其无法排除对电极的干扰,极化、交叉污染等因素的影响在所难免[11 -12 ] .此外,对称电池的组装条件苛刻,往往需要预先活化电极,再拆出重新装配,难以确保实验的一致性.而整合了参比电极的三电极体系则能很好地解决上述问题——解耦和定量两大功能使其可以单独研究每个电极的特性及其对电池整体性能的影响[13 ] . ...
1
... 锂离子电池是消费、动力和新型储能领域的主流选择[1 -2 ] ,其应用促进了可再生能源的并网和利用,为“双碳”目标的实现以及可持续社会的发展作出了突出贡献[3 ] .在日益增长的高能量密度需求下[4 ] ,以金属锂为负极的锂金属电池因其极高的能量密度潜力而被视作下一代电池的终极选择[5 -6 ] .不论是目前已经商业化的锂离子电池还是研发中的锂金属电池,通常都是由正负极构成的两电极体系,因此全电池信号耦合了正极和负极的信息,使锂电池成为黑箱[7 ] .如此便无法获知单一电极的特性,给电池的开发带来了困难,电池整体的健康状态也难以确定[8 ] ,极大地遏制了电池性能的发挥并埋下了安全隐患.为解决该难题,研究学者常常会采用半电池或对称电池构型,将对电极作为参比电极来解耦工作电极性质[9 -10 ] .然而,上述构型的两电极属性决定了其无法排除对电极的干扰,极化、交叉污染等因素的影响在所难免[11 -12 ] .此外,对称电池的组装条件苛刻,往往需要预先活化电极,再拆出重新装配,难以确保实验的一致性.而整合了参比电极的三电极体系则能很好地解决上述问题——解耦和定量两大功能使其可以单独研究每个电极的特性及其对电池整体性能的影响[13 ] . ...
1
... 锂离子电池是消费、动力和新型储能领域的主流选择[1 -2 ] ,其应用促进了可再生能源的并网和利用,为“双碳”目标的实现以及可持续社会的发展作出了突出贡献[3 ] .在日益增长的高能量密度需求下[4 ] ,以金属锂为负极的锂金属电池因其极高的能量密度潜力而被视作下一代电池的终极选择[5 -6 ] .不论是目前已经商业化的锂离子电池还是研发中的锂金属电池,通常都是由正负极构成的两电极体系,因此全电池信号耦合了正极和负极的信息,使锂电池成为黑箱[7 ] .如此便无法获知单一电极的特性,给电池的开发带来了困难,电池整体的健康状态也难以确定[8 ] ,极大地遏制了电池性能的发挥并埋下了安全隐患.为解决该难题,研究学者常常会采用半电池或对称电池构型,将对电极作为参比电极来解耦工作电极性质[9 -10 ] .然而,上述构型的两电极属性决定了其无法排除对电极的干扰,极化、交叉污染等因素的影响在所难免[11 -12 ] .此外,对称电池的组装条件苛刻,往往需要预先活化电极,再拆出重新装配,难以确保实验的一致性.而整合了参比电极的三电极体系则能很好地解决上述问题——解耦和定量两大功能使其可以单独研究每个电极的特性及其对电池整体性能的影响[13 ] . ...
2
... 锂离子电池是消费、动力和新型储能领域的主流选择[1 -2 ] ,其应用促进了可再生能源的并网和利用,为“双碳”目标的实现以及可持续社会的发展作出了突出贡献[3 ] .在日益增长的高能量密度需求下[4 ] ,以金属锂为负极的锂金属电池因其极高的能量密度潜力而被视作下一代电池的终极选择[5 -6 ] .不论是目前已经商业化的锂离子电池还是研发中的锂金属电池,通常都是由正负极构成的两电极体系,因此全电池信号耦合了正极和负极的信息,使锂电池成为黑箱[7 ] .如此便无法获知单一电极的特性,给电池的开发带来了困难,电池整体的健康状态也难以确定[8 ] ,极大地遏制了电池性能的发挥并埋下了安全隐患.为解决该难题,研究学者常常会采用半电池或对称电池构型,将对电极作为参比电极来解耦工作电极性质[9 -10 ] .然而,上述构型的两电极属性决定了其无法排除对电极的干扰,极化、交叉污染等因素的影响在所难免[11 -12 ] .此外,对称电池的组装条件苛刻,往往需要预先活化电极,再拆出重新装配,难以确保实验的一致性.而整合了参比电极的三电极体系则能很好地解决上述问题——解耦和定量两大功能使其可以单独研究每个电极的特性及其对电池整体性能的影响[13 ] . ...
... 作为一种电极动力学的无损诊断方法,EIS可以区分具有不同特征频率的电极过程.借助参比电极,原本两电极的耦合频率响应(一种凹陷的半椭圆——特征频率重叠导致特征半圆交叠[7 ] )能够很好地被区分,有助于深入理解电池内部的工作/失效机制.Yao等[89 ] 使用三电极设置对石墨负极进行变温EIS测试,通过对各界面过程阻抗进行Arrhenius定律拟合,真实地反映出石墨/电解液界面锂离子的脱溶剂化以及穿过SEI的能垒,印证了弱溶剂化体系中溶剂化配位结构-界面化学-电极过程动力学的构效关系,为下一代储能器件的电解液设计提供了不同的见解.快充、低温锂离子电池是当前主要的开发需求,但析锂问题一直困扰着研究学者和工业界[90 ] .析锂不仅会导致电池容量损失,枝晶状的锂沉积还容易引发电池短路[91 ] ,极大地威胁电池的安全运行[92 ] .在众多无损析锂检测技术中,基于电化学信号的诊断方法是最具实用性和可行性的.Xu等[93 ] 采用三电极电池构型对石墨负极进行暂态和阻抗分析,发现iR 降与负极的电荷转移阻抗变化趋势一致而不受欧姆和SEI阻抗的影响.由于析锂相当于在原始嵌锂反应上并联一个锂沉积过程,会导致石墨整体电荷转移阻抗降低,于是便可通过检测iR 降中R 的变化来指认析锂的发生.另外,基于析锂会增大石墨负极的电化学活性表面积(ECSA),而ECSA又与双电层电容紧密相关,借助参比电极检测石墨负极EIS虚部变化以获得电极容抗行为可以用于指示析锂的起始点[图4 (a)].更进一步,Xu等[94 ] 利用三电极设置解耦出正负极各自电极过程的响应频率范围,从而选择合适的特征频率进行单频动态电化学阻抗谱(DEIS)测试,避开了正极干扰,将该方法——动态电容检测技术扩展到实际两电极体系中,可便捷地对常规电池进行在线安全预警.最近,Xu等[95 ] 还提出了基于弛豫时间检测的原位析锂诊断技术.当析锂发生时,耦合了锂沉积和原有锂插层的整体反应被加快,导致电荷转移过程的弛豫时间降低,借助三电极快速弛豫方法对石墨负极相应的电荷转移过程进行拟合,便可获得充电过程中石墨表面反应弛豫时间的演变规律,以此建立析锂的安全边界条件,促进了快充协议的开发. ...
3
... 锂离子电池是消费、动力和新型储能领域的主流选择[1 -2 ] ,其应用促进了可再生能源的并网和利用,为“双碳”目标的实现以及可持续社会的发展作出了突出贡献[3 ] .在日益增长的高能量密度需求下[4 ] ,以金属锂为负极的锂金属电池因其极高的能量密度潜力而被视作下一代电池的终极选择[5 -6 ] .不论是目前已经商业化的锂离子电池还是研发中的锂金属电池,通常都是由正负极构成的两电极体系,因此全电池信号耦合了正极和负极的信息,使锂电池成为黑箱[7 ] .如此便无法获知单一电极的特性,给电池的开发带来了困难,电池整体的健康状态也难以确定[8 ] ,极大地遏制了电池性能的发挥并埋下了安全隐患.为解决该难题,研究学者常常会采用半电池或对称电池构型,将对电极作为参比电极来解耦工作电极性质[9 -10 ] .然而,上述构型的两电极属性决定了其无法排除对电极的干扰,极化、交叉污染等因素的影响在所难免[11 -12 ] .此外,对称电池的组装条件苛刻,往往需要预先活化电极,再拆出重新装配,难以确保实验的一致性.而整合了参比电极的三电极体系则能很好地解决上述问题——解耦和定量两大功能使其可以单独研究每个电极的特性及其对电池整体性能的影响[13 ] . ...
... 参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
... 锂合金也是一种常见的参比电极活性材料,它们的对锂电位在0~1 V,这在一定程度上可以缓解电解液的分解,从而弱化SEI的影响[8 ] .值得注意的是,锂合金通常具有多段相区间,在每一段两相区内锂合金具有不同的平衡电位,应当确保合金参比电极处于特定的、具有宽化学计量范围的两相区域,使其对应电位能够在长期使用过程中保持稳定[24 ,34 ] .此外,当在电池中对锂合金参比电极进行原位锂化或恢复时,应注意合金化过程所产生的体积变化,因为这不仅可能导致参比电极的结构失效,产生的局部应力还极易破坏电极甚至使电池短路.另一类活性材料是锂嵌入氧化物,包括Li4 Ti5 O12 (LTO)和LiFePO4 (LFP)[45 -48 ] .由于两相反应机制,它们分别在1.5 V和3.4 V附近具有稳定的电位平台[49 ] .与合金类似,在制备和恢复此类参比电极时,应将其荷电状态保持在平台区域.相较于LFP材料,LTO对湿度较为敏感,但其适中的平台电位具有更广泛的电解液兼容性,是较为常用的参比电极活性材料,而LFP容易在氧化稳定性差的醚类电解液中失效.除了上述几种常见的参比电极活性材料外,还有一类需要溶解到电解液中才能发挥作用的特殊活性材料(内参比),即二茂铁|二茂铁离子、二茂钴|二茂钴离子或其衍生物所组成的氧化还原对[16 ] .这种内参比体系往往具有较大的尺寸能够离域电荷,从而削弱不同体系中溶剂化作用对其基准电位的影响[50 ] ,因此也被国际纯粹与应用化学联合会推荐用作电势校正.然而,由于这些氧化还原对的电化学和化学活性[51 ] ,内参比在锂电池中的应用较少[52 ] ,更多情况下是作为通用的基准来比较不同电解液体系间的电位差异[38 ] . ...
1
... 锂离子电池是消费、动力和新型储能领域的主流选择[1 -2 ] ,其应用促进了可再生能源的并网和利用,为“双碳”目标的实现以及可持续社会的发展作出了突出贡献[3 ] .在日益增长的高能量密度需求下[4 ] ,以金属锂为负极的锂金属电池因其极高的能量密度潜力而被视作下一代电池的终极选择[5 -6 ] .不论是目前已经商业化的锂离子电池还是研发中的锂金属电池,通常都是由正负极构成的两电极体系,因此全电池信号耦合了正极和负极的信息,使锂电池成为黑箱[7 ] .如此便无法获知单一电极的特性,给电池的开发带来了困难,电池整体的健康状态也难以确定[8 ] ,极大地遏制了电池性能的发挥并埋下了安全隐患.为解决该难题,研究学者常常会采用半电池或对称电池构型,将对电极作为参比电极来解耦工作电极性质[9 -10 ] .然而,上述构型的两电极属性决定了其无法排除对电极的干扰,极化、交叉污染等因素的影响在所难免[11 -12 ] .此外,对称电池的组装条件苛刻,往往需要预先活化电极,再拆出重新装配,难以确保实验的一致性.而整合了参比电极的三电极体系则能很好地解决上述问题——解耦和定量两大功能使其可以单独研究每个电极的特性及其对电池整体性能的影响[13 ] . ...
2
... 锂离子电池是消费、动力和新型储能领域的主流选择[1 -2 ] ,其应用促进了可再生能源的并网和利用,为“双碳”目标的实现以及可持续社会的发展作出了突出贡献[3 ] .在日益增长的高能量密度需求下[4 ] ,以金属锂为负极的锂金属电池因其极高的能量密度潜力而被视作下一代电池的终极选择[5 -6 ] .不论是目前已经商业化的锂离子电池还是研发中的锂金属电池,通常都是由正负极构成的两电极体系,因此全电池信号耦合了正极和负极的信息,使锂电池成为黑箱[7 ] .如此便无法获知单一电极的特性,给电池的开发带来了困难,电池整体的健康状态也难以确定[8 ] ,极大地遏制了电池性能的发挥并埋下了安全隐患.为解决该难题,研究学者常常会采用半电池或对称电池构型,将对电极作为参比电极来解耦工作电极性质[9 -10 ] .然而,上述构型的两电极属性决定了其无法排除对电极的干扰,极化、交叉污染等因素的影响在所难免[11 -12 ] .此外,对称电池的组装条件苛刻,往往需要预先活化电极,再拆出重新装配,难以确保实验的一致性.而整合了参比电极的三电极体系则能很好地解决上述问题——解耦和定量两大功能使其可以单独研究每个电极的特性及其对电池整体性能的影响[13 ] . ...
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
4
... 锂离子电池是消费、动力和新型储能领域的主流选择[1 -2 ] ,其应用促进了可再生能源的并网和利用,为“双碳”目标的实现以及可持续社会的发展作出了突出贡献[3 ] .在日益增长的高能量密度需求下[4 ] ,以金属锂为负极的锂金属电池因其极高的能量密度潜力而被视作下一代电池的终极选择[5 -6 ] .不论是目前已经商业化的锂离子电池还是研发中的锂金属电池,通常都是由正负极构成的两电极体系,因此全电池信号耦合了正极和负极的信息,使锂电池成为黑箱[7 ] .如此便无法获知单一电极的特性,给电池的开发带来了困难,电池整体的健康状态也难以确定[8 ] ,极大地遏制了电池性能的发挥并埋下了安全隐患.为解决该难题,研究学者常常会采用半电池或对称电池构型,将对电极作为参比电极来解耦工作电极性质[9 -10 ] .然而,上述构型的两电极属性决定了其无法排除对电极的干扰,极化、交叉污染等因素的影响在所难免[11 -12 ] .此外,对称电池的组装条件苛刻,往往需要预先活化电极,再拆出重新装配,难以确保实验的一致性.而整合了参比电极的三电极体系则能很好地解决上述问题——解耦和定量两大功能使其可以单独研究每个电极的特性及其对电池整体性能的影响[13 ] . ...
... 目前,在非水二次电池的科学研究和工业应用中耐用参比电极的实际构建仍然具有挑战性.
图1 总结了各类锂电池用参比电极的静态和动态电位稳定性,静态稳定性均以对锂电位为基准[
图1 (a)],动态稳定性则以稳定检测循环圈数计算[
图1 (b)].其中,参比电极最长静态寿命仅三个月,且电位波动难以控制(>2 mV),远远无法满足三电极电池的长期储存要求,而更为重要的基于实用体系的动态循环寿命还鲜有报道.因此,迫切需要开发高度可靠的参比电极,这对于准确监测工作电极状态以及发展高能量、高安全锂电池均具有重要意义.本综述重点介绍了锂电池中参比电极的设计和应用:总结了锂电池用参比电极的基本设计参数——包括选材、几何尺寸、制备工艺和设置对参比电极可靠性以及电池性能的重要影响;综述了本课题组在锂电池工作/失效机制分析方面应用参比电极的实例;最后提出了开发和部署锂电池用参比电极的挑战和展望.
图1 锂电池用参比电极的 (a) 静态[11 , 19 -29 ] 和 (b) 动态[11 , 22 , 24 , 30 -32 ] 使用寿命 (a) Static and (b) dynamic service life of reference electrodes for lithium batteries Fig. 1 ![]()
1 参比电极的设计 1.1 活性材料参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
... [
11 ,
22 ,
24 ,
30 -
32 ]使用寿命
(a) Static and (b) dynamic service life of reference electrodes for lithium batteries Fig. 1 ![]()
1 参比电极的设计 1.1 活性材料参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
... 参比电极形式多样,适配于不同的电池构型,例如特制电池中的点状、环状参比电极,纽扣电池中的线状参比电极以及软包、圆柱和方壳等实用电池中的条形或网状参比电极等[53 -54 ] .总的来说,参比电极的插入应尽量减少对原始电池的干扰[55 ] .点状和线状参比电极体积较小,对电池内部离子传输影响不大,并且采样梯度范围较小有利于精准检测.此外,更小的暴露面积也会减缓活性材料的腐蚀和失效.然而,点状和线状参比电极较小的体积更容易导致三电极电池内部受力不均,存在极片破损和电池短路的风险[11 ] .在这方面,片状和网状参比电极的引入有助于均匀化应力分布,但较大的几何面积会增大电池内阻,极大地影响电池的倍率性能[56 ] .因此需要结合理论计算对开孔面积和分布进行优化,尽可能弱化参比电极对电池的入侵影响[57 ] .实际上如Li等[58 ] 所述,即使对于面积较小的线参比电极,其也会因阻塞效应产生检测误差[59 ] ——在电池动态循环过程中,额外引入的参比电极会阻碍离子输运,增大电解质浓度梯度[图2 (a)],不仅改变欧姆压降还会影响电极表面的反应电流,从而干扰工作电极电位的准确检测.Simon等[26 ] 基于有限元方法模拟评估了不同直径线状参比电极的检测可靠性,他们通过比较电极界面阻抗比(Z int,1 /Z int,2 )和反应传递系数(α )的模拟值和理想值来分析参比电极检测精度.如图2 (b)所示,当参比电极直径小于10 μm时,两者偏差几乎可以忽略,然而实际制备和使用如此微型的参比电极仍具有较大挑战. ...
1
... 锂离子电池是消费、动力和新型储能领域的主流选择[1 -2 ] ,其应用促进了可再生能源的并网和利用,为“双碳”目标的实现以及可持续社会的发展作出了突出贡献[3 ] .在日益增长的高能量密度需求下[4 ] ,以金属锂为负极的锂金属电池因其极高的能量密度潜力而被视作下一代电池的终极选择[5 -6 ] .不论是目前已经商业化的锂离子电池还是研发中的锂金属电池,通常都是由正负极构成的两电极体系,因此全电池信号耦合了正极和负极的信息,使锂电池成为黑箱[7 ] .如此便无法获知单一电极的特性,给电池的开发带来了困难,电池整体的健康状态也难以确定[8 ] ,极大地遏制了电池性能的发挥并埋下了安全隐患.为解决该难题,研究学者常常会采用半电池或对称电池构型,将对电极作为参比电极来解耦工作电极性质[9 -10 ] .然而,上述构型的两电极属性决定了其无法排除对电极的干扰,极化、交叉污染等因素的影响在所难免[11 -12 ] .此外,对称电池的组装条件苛刻,往往需要预先活化电极,再拆出重新装配,难以确保实验的一致性.而整合了参比电极的三电极体系则能很好地解决上述问题——解耦和定量两大功能使其可以单独研究每个电极的特性及其对电池整体性能的影响[13 ] . ...
2
... 锂离子电池是消费、动力和新型储能领域的主流选择[1 -2 ] ,其应用促进了可再生能源的并网和利用,为“双碳”目标的实现以及可持续社会的发展作出了突出贡献[3 ] .在日益增长的高能量密度需求下[4 ] ,以金属锂为负极的锂金属电池因其极高的能量密度潜力而被视作下一代电池的终极选择[5 -6 ] .不论是目前已经商业化的锂离子电池还是研发中的锂金属电池,通常都是由正负极构成的两电极体系,因此全电池信号耦合了正极和负极的信息,使锂电池成为黑箱[7 ] .如此便无法获知单一电极的特性,给电池的开发带来了困难,电池整体的健康状态也难以确定[8 ] ,极大地遏制了电池性能的发挥并埋下了安全隐患.为解决该难题,研究学者常常会采用半电池或对称电池构型,将对电极作为参比电极来解耦工作电极性质[9 -10 ] .然而,上述构型的两电极属性决定了其无法排除对电极的干扰,极化、交叉污染等因素的影响在所难免[11 -12 ] .此外,对称电池的组装条件苛刻,往往需要预先活化电极,再拆出重新装配,难以确保实验的一致性.而整合了参比电极的三电极体系则能很好地解决上述问题——解耦和定量两大功能使其可以单独研究每个电极的特性及其对电池整体性能的影响[13 ] . ...
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
2
... 参比电极理论上属于理想不极化电极,即在电流通过时参比电极不会发生极化.在实际选择中应以具有较低反应驱动力(极化)的电极作为参比电极,因为它可以确保电位基准的稳定(尽管通过参比电极的检测电流极小——在纳安级)[14 ] .具体而言,这类电极通常具有较大的交换电流密度和良好的可逆性,能够快速建立和恢复平衡状态,从而准确检测工作电极的相对电位[15 ] .除了快速的电极反应动力学外,参比电极所对应的电极反应应当是单一且可逆的,以使电极电位保持热力学稳定,并可通过能斯特方程来描述一定温度下氧化和还原物种活度与电极电位之间的关系[16 ] .除了上述参比电极的基本特性外,锂电池用参比电极还应具备以下特征. ...
... 参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
1
... 参比电极理论上属于理想不极化电极,即在电流通过时参比电极不会发生极化.在实际选择中应以具有较低反应驱动力(极化)的电极作为参比电极,因为它可以确保电位基准的稳定(尽管通过参比电极的检测电流极小——在纳安级)[14 ] .具体而言,这类电极通常具有较大的交换电流密度和良好的可逆性,能够快速建立和恢复平衡状态,从而准确检测工作电极的相对电位[15 ] .除了快速的电极反应动力学外,参比电极所对应的电极反应应当是单一且可逆的,以使电极电位保持热力学稳定,并可通过能斯特方程来描述一定温度下氧化和还原物种活度与电极电位之间的关系[16 ] .除了上述参比电极的基本特性外,锂电池用参比电极还应具备以下特征. ...
2
... 参比电极理论上属于理想不极化电极,即在电流通过时参比电极不会发生极化.在实际选择中应以具有较低反应驱动力(极化)的电极作为参比电极,因为它可以确保电位基准的稳定(尽管通过参比电极的检测电流极小——在纳安级)[14 ] .具体而言,这类电极通常具有较大的交换电流密度和良好的可逆性,能够快速建立和恢复平衡状态,从而准确检测工作电极的相对电位[15 ] .除了快速的电极反应动力学外,参比电极所对应的电极反应应当是单一且可逆的,以使电极电位保持热力学稳定,并可通过能斯特方程来描述一定温度下氧化和还原物种活度与电极电位之间的关系[16 ] .除了上述参比电极的基本特性外,锂电池用参比电极还应具备以下特征. ...
... 锂合金也是一种常见的参比电极活性材料,它们的对锂电位在0~1 V,这在一定程度上可以缓解电解液的分解,从而弱化SEI的影响[8 ] .值得注意的是,锂合金通常具有多段相区间,在每一段两相区内锂合金具有不同的平衡电位,应当确保合金参比电极处于特定的、具有宽化学计量范围的两相区域,使其对应电位能够在长期使用过程中保持稳定[24 ,34 ] .此外,当在电池中对锂合金参比电极进行原位锂化或恢复时,应注意合金化过程所产生的体积变化,因为这不仅可能导致参比电极的结构失效,产生的局部应力还极易破坏电极甚至使电池短路.另一类活性材料是锂嵌入氧化物,包括Li4 Ti5 O12 (LTO)和LiFePO4 (LFP)[45 -48 ] .由于两相反应机制,它们分别在1.5 V和3.4 V附近具有稳定的电位平台[49 ] .与合金类似,在制备和恢复此类参比电极时,应将其荷电状态保持在平台区域.相较于LFP材料,LTO对湿度较为敏感,但其适中的平台电位具有更广泛的电解液兼容性,是较为常用的参比电极活性材料,而LFP容易在氧化稳定性差的醚类电解液中失效.除了上述几种常见的参比电极活性材料外,还有一类需要溶解到电解液中才能发挥作用的特殊活性材料(内参比),即二茂铁|二茂铁离子、二茂钴|二茂钴离子或其衍生物所组成的氧化还原对[16 ] .这种内参比体系往往具有较大的尺寸能够离域电荷,从而削弱不同体系中溶剂化作用对其基准电位的影响[50 ] ,因此也被国际纯粹与应用化学联合会推荐用作电势校正.然而,由于这些氧化还原对的电化学和化学活性[51 ] ,内参比在锂电池中的应用较少[52 ] ,更多情况下是作为通用的基准来比较不同电解液体系间的电位差异[38 ] . ...
1
... (1)微型化.具有较高能量密度的锂电池往往具有紧凑的配置,因此为了减小对电池系统的影响,应当对参比电极的几何尺寸进行优化,尽量降低离子传输阻力以及局部应力[17 ] . ...
2
... (2)与锂电池电解质高度兼容.锂电池中使用的电解质包括非水系有机电解质、聚合物电解质和无机固态电解质.参比电极对电解质的反应性十分敏感,不稳定的电解质会腐蚀参比电极活性材料,干扰检测[18 ] .为了保证参比电极的准确性和长期可靠性,参比电极必须与电解质在化学和电化学方面高度兼容. ...
... 参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
2
... 目前,在非水二次电池的科学研究和工业应用中耐用参比电极的实际构建仍然具有挑战性.
图1 总结了各类锂电池用参比电极的静态和动态电位稳定性,静态稳定性均以对锂电位为基准[
图1 (a)],动态稳定性则以稳定检测循环圈数计算[
图1 (b)].其中,参比电极最长静态寿命仅三个月,且电位波动难以控制(>2 mV),远远无法满足三电极电池的长期储存要求,而更为重要的基于实用体系的动态循环寿命还鲜有报道.因此,迫切需要开发高度可靠的参比电极,这对于准确监测工作电极状态以及发展高能量、高安全锂电池均具有重要意义.本综述重点介绍了锂电池中参比电极的设计和应用:总结了锂电池用参比电极的基本设计参数——包括选材、几何尺寸、制备工艺和设置对参比电极可靠性以及电池性能的重要影响;综述了本课题组在锂电池工作/失效机制分析方面应用参比电极的实例;最后提出了开发和部署锂电池用参比电极的挑战和展望.
图1 锂电池用参比电极的 (a) 静态[11 , 19 -29 ] 和 (b) 动态[11 , 22 , 24 , 30 -32 ] 使用寿命 (a) Static and (b) dynamic service life of reference electrodes for lithium batteries Fig. 1 ![]()
1 参比电极的设计 1.1 活性材料参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
... 参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
3
... 目前,在非水二次电池的科学研究和工业应用中耐用参比电极的实际构建仍然具有挑战性.
图1 总结了各类锂电池用参比电极的静态和动态电位稳定性,静态稳定性均以对锂电位为基准[
图1 (a)],动态稳定性则以稳定检测循环圈数计算[
图1 (b)].其中,参比电极最长静态寿命仅三个月,且电位波动难以控制(>2 mV),远远无法满足三电极电池的长期储存要求,而更为重要的基于实用体系的动态循环寿命还鲜有报道.因此,迫切需要开发高度可靠的参比电极,这对于准确监测工作电极状态以及发展高能量、高安全锂电池均具有重要意义.本综述重点介绍了锂电池中参比电极的设计和应用:总结了锂电池用参比电极的基本设计参数——包括选材、几何尺寸、制备工艺和设置对参比电极可靠性以及电池性能的重要影响;综述了本课题组在锂电池工作/失效机制分析方面应用参比电极的实例;最后提出了开发和部署锂电池用参比电极的挑战和展望.
图1 锂电池用参比电极的 (a) 静态[11 , 19 -29 ] 和 (b) 动态[11 , 22 , 24 , 30 -32 ] 使用寿命 (a) Static and (b) dynamic service life of reference electrodes for lithium batteries Fig. 1 ![]()
1 参比电极的设计 1.1 活性材料参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
... 参比电极的制备工艺大体上可分为非原位和原位两大类,不同工艺的选择对其质量有很大影响.对于金属锂类的参比电极,既可以采用非原位的熔融、辊压或卷绕方法制备,也可以在电池内与锂源构成回路进行原位电沉积,后者避免了前者在微型化操作方面的挑战,但需要仔细选择电沉积参数以获得高质量的锂沉积层[39 ] .Zhou等[22 ] 提出了一种两步沉积法,分别从参比电极两侧均匀地将锂沉积到集流体上,并揭示了电沉积容量和电流密度对参比电极电位稳定性的显著影响:随着沉积层厚度从1 μm提升到4 μm,电流密度从1 mA/cm2 降低到0.2 mA/cm2 ,参比电极寿命分别延长1500 h和800 h,电位稳定性也显著提高.这说明沉积容量是保证电位稳定性的先决条件,在一定沉积容量下再调整沉积电流可改善沉积层质量,从而进一步推迟基准电位偏移的发生.此外,电解质配方的优化对于提高电沉积金属锂参比电极的质量也至关重要[60 ] .对于另外两类材料,它们均需进行原位激活处理:两相反应类参比电极需要先涂覆再进行化成,片状参比还需要进一步成型[61 ] ,而合金类参比电极则可直接对相应集流体进行锂化[62 ] .因此对于前者来说,涂覆的浆料配方、成型方式以及化成过程中的相关参数都是决定参比电极可靠性的关键,这增加了基于两相反应材料制备稳定参比电极的难度.而对于后者来说,需要在合金化过程中着重注意温度、锂化程度等参数[24 ] . ...
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
3
... 目前,在非水二次电池的科学研究和工业应用中耐用参比电极的实际构建仍然具有挑战性.
图1 总结了各类锂电池用参比电极的静态和动态电位稳定性,静态稳定性均以对锂电位为基准[
图1 (a)],动态稳定性则以稳定检测循环圈数计算[
图1 (b)].其中,参比电极最长静态寿命仅三个月,且电位波动难以控制(>2 mV),远远无法满足三电极电池的长期储存要求,而更为重要的基于实用体系的动态循环寿命还鲜有报道.因此,迫切需要开发高度可靠的参比电极,这对于准确监测工作电极状态以及发展高能量、高安全锂电池均具有重要意义.本综述重点介绍了锂电池中参比电极的设计和应用:总结了锂电池用参比电极的基本设计参数——包括选材、几何尺寸、制备工艺和设置对参比电极可靠性以及电池性能的重要影响;综述了本课题组在锂电池工作/失效机制分析方面应用参比电极的实例;最后提出了开发和部署锂电池用参比电极的挑战和展望.
图1 锂电池用参比电极的 (a) 静态[11 , 19 -29 ] 和 (b) 动态[11 , 22 , 24 , 30 -32 ] 使用寿命 (a) Static and (b) dynamic service life of reference electrodes for lithium batteries Fig. 1 ![]()
1 参比电极的设计 1.1 活性材料参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
... 锂合金也是一种常见的参比电极活性材料,它们的对锂电位在0~1 V,这在一定程度上可以缓解电解液的分解,从而弱化SEI的影响[8 ] .值得注意的是,锂合金通常具有多段相区间,在每一段两相区内锂合金具有不同的平衡电位,应当确保合金参比电极处于特定的、具有宽化学计量范围的两相区域,使其对应电位能够在长期使用过程中保持稳定[24 ,34 ] .此外,当在电池中对锂合金参比电极进行原位锂化或恢复时,应注意合金化过程所产生的体积变化,因为这不仅可能导致参比电极的结构失效,产生的局部应力还极易破坏电极甚至使电池短路.另一类活性材料是锂嵌入氧化物,包括Li4 Ti5 O12 (LTO)和LiFePO4 (LFP)[45 -48 ] .由于两相反应机制,它们分别在1.5 V和3.4 V附近具有稳定的电位平台[49 ] .与合金类似,在制备和恢复此类参比电极时,应将其荷电状态保持在平台区域.相较于LFP材料,LTO对湿度较为敏感,但其适中的平台电位具有更广泛的电解液兼容性,是较为常用的参比电极活性材料,而LFP容易在氧化稳定性差的醚类电解液中失效.除了上述几种常见的参比电极活性材料外,还有一类需要溶解到电解液中才能发挥作用的特殊活性材料(内参比),即二茂铁|二茂铁离子、二茂钴|二茂钴离子或其衍生物所组成的氧化还原对[16 ] .这种内参比体系往往具有较大的尺寸能够离域电荷,从而削弱不同体系中溶剂化作用对其基准电位的影响[50 ] ,因此也被国际纯粹与应用化学联合会推荐用作电势校正.然而,由于这些氧化还原对的电化学和化学活性[51 ] ,内参比在锂电池中的应用较少[52 ] ,更多情况下是作为通用的基准来比较不同电解液体系间的电位差异[38 ] . ...
... 参比电极的制备工艺大体上可分为非原位和原位两大类,不同工艺的选择对其质量有很大影响.对于金属锂类的参比电极,既可以采用非原位的熔融、辊压或卷绕方法制备,也可以在电池内与锂源构成回路进行原位电沉积,后者避免了前者在微型化操作方面的挑战,但需要仔细选择电沉积参数以获得高质量的锂沉积层[39 ] .Zhou等[22 ] 提出了一种两步沉积法,分别从参比电极两侧均匀地将锂沉积到集流体上,并揭示了电沉积容量和电流密度对参比电极电位稳定性的显著影响:随着沉积层厚度从1 μm提升到4 μm,电流密度从1 mA/cm2 降低到0.2 mA/cm2 ,参比电极寿命分别延长1500 h和800 h,电位稳定性也显著提高.这说明沉积容量是保证电位稳定性的先决条件,在一定沉积容量下再调整沉积电流可改善沉积层质量,从而进一步推迟基准电位偏移的发生.此外,电解质配方的优化对于提高电沉积金属锂参比电极的质量也至关重要[60 ] .对于另外两类材料,它们均需进行原位激活处理:两相反应类参比电极需要先涂覆再进行化成,片状参比还需要进一步成型[61 ] ,而合金类参比电极则可直接对相应集流体进行锂化[62 ] .因此对于前者来说,涂覆的浆料配方、成型方式以及化成过程中的相关参数都是决定参比电极可靠性的关键,这增加了基于两相反应材料制备稳定参比电极的难度.而对于后者来说,需要在合金化过程中着重注意温度、锂化程度等参数[24 ] . ...
3
... 参比电极形式多样,适配于不同的电池构型,例如特制电池中的点状、环状参比电极,纽扣电池中的线状参比电极以及软包、圆柱和方壳等实用电池中的条形或网状参比电极等[53 -54 ] .总的来说,参比电极的插入应尽量减少对原始电池的干扰[55 ] .点状和线状参比电极体积较小,对电池内部离子传输影响不大,并且采样梯度范围较小有利于精准检测.此外,更小的暴露面积也会减缓活性材料的腐蚀和失效.然而,点状和线状参比电极较小的体积更容易导致三电极电池内部受力不均,存在极片破损和电池短路的风险[11 ] .在这方面,片状和网状参比电极的引入有助于均匀化应力分布,但较大的几何面积会增大电池内阻,极大地影响电池的倍率性能[56 ] .因此需要结合理论计算对开孔面积和分布进行优化,尽可能弱化参比电极对电池的入侵影响[57 ] .实际上如Li等[58 ] 所述,即使对于面积较小的线参比电极,其也会因阻塞效应产生检测误差[59 ] ——在电池动态循环过程中,额外引入的参比电极会阻碍离子输运,增大电解质浓度梯度[图2 (a)],不仅改变欧姆压降还会影响电极表面的反应电流,从而干扰工作电极电位的准确检测.Simon等[26 ] 基于有限元方法模拟评估了不同直径线状参比电极的检测可靠性,他们通过比较电极界面阻抗比(Z int,1 /Z int,2 )和反应传递系数(α )的模拟值和理想值来分析参比电极检测精度.如图2 (b)所示,当参比电极直径小于10 μm时,两者偏差几乎可以忽略,然而实际制备和使用如此微型的参比电极仍具有较大挑战. ...
... [
26 ]
(a) Electrolyte concentration evolution in the vicinity of the reference electrode at 0.5 C[59 ] ; (b) Simulated evaluation results of the diameter-dependent reference electrode quality[26 ] Fig. 2 ![]()
1.3 制备工艺参比电极的制备工艺大体上可分为非原位和原位两大类,不同工艺的选择对其质量有很大影响.对于金属锂类的参比电极,既可以采用非原位的熔融、辊压或卷绕方法制备,也可以在电池内与锂源构成回路进行原位电沉积,后者避免了前者在微型化操作方面的挑战,但需要仔细选择电沉积参数以获得高质量的锂沉积层[39 ] .Zhou等[22 ] 提出了一种两步沉积法,分别从参比电极两侧均匀地将锂沉积到集流体上,并揭示了电沉积容量和电流密度对参比电极电位稳定性的显著影响:随着沉积层厚度从1 μm提升到4 μm,电流密度从1 mA/cm2 降低到0.2 mA/cm2 ,参比电极寿命分别延长1500 h和800 h,电位稳定性也显著提高.这说明沉积容量是保证电位稳定性的先决条件,在一定沉积容量下再调整沉积电流可改善沉积层质量,从而进一步推迟基准电位偏移的发生.此外,电解质配方的优化对于提高电沉积金属锂参比电极的质量也至关重要[60 ] .对于另外两类材料,它们均需进行原位激活处理:两相反应类参比电极需要先涂覆再进行化成,片状参比还需要进一步成型[61 ] ,而合金类参比电极则可直接对相应集流体进行锂化[62 ] .因此对于前者来说,涂覆的浆料配方、成型方式以及化成过程中的相关参数都是决定参比电极可靠性的关键,这增加了基于两相反应材料制备稳定参比电极的难度.而对于后者来说,需要在合金化过程中着重注意温度、锂化程度等参数[24 ] . ...
... [
26 ]
Fig. 2 ![]()
1.3 制备工艺参比电极的制备工艺大体上可分为非原位和原位两大类,不同工艺的选择对其质量有很大影响.对于金属锂类的参比电极,既可以采用非原位的熔融、辊压或卷绕方法制备,也可以在电池内与锂源构成回路进行原位电沉积,后者避免了前者在微型化操作方面的挑战,但需要仔细选择电沉积参数以获得高质量的锂沉积层[39 ] .Zhou等[22 ] 提出了一种两步沉积法,分别从参比电极两侧均匀地将锂沉积到集流体上,并揭示了电沉积容量和电流密度对参比电极电位稳定性的显著影响:随着沉积层厚度从1 μm提升到4 μm,电流密度从1 mA/cm2 降低到0.2 mA/cm2 ,参比电极寿命分别延长1500 h和800 h,电位稳定性也显著提高.这说明沉积容量是保证电位稳定性的先决条件,在一定沉积容量下再调整沉积电流可改善沉积层质量,从而进一步推迟基准电位偏移的发生.此外,电解质配方的优化对于提高电沉积金属锂参比电极的质量也至关重要[60 ] .对于另外两类材料,它们均需进行原位激活处理:两相反应类参比电极需要先涂覆再进行化成,片状参比还需要进一步成型[61 ] ,而合金类参比电极则可直接对相应集流体进行锂化[62 ] .因此对于前者来说,涂覆的浆料配方、成型方式以及化成过程中的相关参数都是决定参比电极可靠性的关键,这增加了基于两相反应材料制备稳定参比电极的难度.而对于后者来说,需要在合金化过程中着重注意温度、锂化程度等参数[24 ] . ...
1
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 目前,在非水二次电池的科学研究和工业应用中耐用参比电极的实际构建仍然具有挑战性.
图1 总结了各类锂电池用参比电极的静态和动态电位稳定性,静态稳定性均以对锂电位为基准[
图1 (a)],动态稳定性则以稳定检测循环圈数计算[
图1 (b)].其中,参比电极最长静态寿命仅三个月,且电位波动难以控制(>2 mV),远远无法满足三电极电池的长期储存要求,而更为重要的基于实用体系的动态循环寿命还鲜有报道.因此,迫切需要开发高度可靠的参比电极,这对于准确监测工作电极状态以及发展高能量、高安全锂电池均具有重要意义.本综述重点介绍了锂电池中参比电极的设计和应用:总结了锂电池用参比电极的基本设计参数——包括选材、几何尺寸、制备工艺和设置对参比电极可靠性以及电池性能的重要影响;综述了本课题组在锂电池工作/失效机制分析方面应用参比电极的实例;最后提出了开发和部署锂电池用参比电极的挑战和展望.
图1 锂电池用参比电极的 (a) 静态[11 , 19 -29 ] 和 (b) 动态[11 , 22 , 24 , 30 -32 ] 使用寿命 (a) Static and (b) dynamic service life of reference electrodes for lithium batteries Fig. 1 ![]()
1 参比电极的设计 1.1 活性材料参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
2
... 目前,在非水二次电池的科学研究和工业应用中耐用参比电极的实际构建仍然具有挑战性.
图1 总结了各类锂电池用参比电极的静态和动态电位稳定性,静态稳定性均以对锂电位为基准[
图1 (a)],动态稳定性则以稳定检测循环圈数计算[
图1 (b)].其中,参比电极最长静态寿命仅三个月,且电位波动难以控制(>2 mV),远远无法满足三电极电池的长期储存要求,而更为重要的基于实用体系的动态循环寿命还鲜有报道.因此,迫切需要开发高度可靠的参比电极,这对于准确监测工作电极状态以及发展高能量、高安全锂电池均具有重要意义.本综述重点介绍了锂电池中参比电极的设计和应用:总结了锂电池用参比电极的基本设计参数——包括选材、几何尺寸、制备工艺和设置对参比电极可靠性以及电池性能的重要影响;综述了本课题组在锂电池工作/失效机制分析方面应用参比电极的实例;最后提出了开发和部署锂电池用参比电极的挑战和展望.
图1 锂电池用参比电极的 (a) 静态[11 , 19 -29 ] 和 (b) 动态[11 , 22 , 24 , 30 -32 ] 使用寿命 (a) Static and (b) dynamic service life of reference electrodes for lithium batteries Fig. 1 ![]()
1 参比电极的设计 1.1 活性材料参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
2
... 目前,在非水二次电池的科学研究和工业应用中耐用参比电极的实际构建仍然具有挑战性.
图1 总结了各类锂电池用参比电极的静态和动态电位稳定性,静态稳定性均以对锂电位为基准[
图1 (a)],动态稳定性则以稳定检测循环圈数计算[
图1 (b)].其中,参比电极最长静态寿命仅三个月,且电位波动难以控制(>2 mV),远远无法满足三电极电池的长期储存要求,而更为重要的基于实用体系的动态循环寿命还鲜有报道.因此,迫切需要开发高度可靠的参比电极,这对于准确监测工作电极状态以及发展高能量、高安全锂电池均具有重要意义.本综述重点介绍了锂电池中参比电极的设计和应用:总结了锂电池用参比电极的基本设计参数——包括选材、几何尺寸、制备工艺和设置对参比电极可靠性以及电池性能的重要影响;综述了本课题组在锂电池工作/失效机制分析方面应用参比电极的实例;最后提出了开发和部署锂电池用参比电极的挑战和展望.
图1 锂电池用参比电极的 (a) 静态[11 , 19 -29 ] 和 (b) 动态[11 , 22 , 24 , 30 -32 ] 使用寿命 (a) Static and (b) dynamic service life of reference electrodes for lithium batteries Fig. 1 ![]()
1 参比电极的设计 1.1 活性材料参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
1
... 锂合金也是一种常见的参比电极活性材料,它们的对锂电位在0~1 V,这在一定程度上可以缓解电解液的分解,从而弱化SEI的影响[8 ] .值得注意的是,锂合金通常具有多段相区间,在每一段两相区内锂合金具有不同的平衡电位,应当确保合金参比电极处于特定的、具有宽化学计量范围的两相区域,使其对应电位能够在长期使用过程中保持稳定[24 ,34 ] .此外,当在电池中对锂合金参比电极进行原位锂化或恢复时,应注意合金化过程所产生的体积变化,因为这不仅可能导致参比电极的结构失效,产生的局部应力还极易破坏电极甚至使电池短路.另一类活性材料是锂嵌入氧化物,包括Li4 Ti5 O12 (LTO)和LiFePO4 (LFP)[45 -48 ] .由于两相反应机制,它们分别在1.5 V和3.4 V附近具有稳定的电位平台[49 ] .与合金类似,在制备和恢复此类参比电极时,应将其荷电状态保持在平台区域.相较于LFP材料,LTO对湿度较为敏感,但其适中的平台电位具有更广泛的电解液兼容性,是较为常用的参比电极活性材料,而LFP容易在氧化稳定性差的醚类电解液中失效.除了上述几种常见的参比电极活性材料外,还有一类需要溶解到电解液中才能发挥作用的特殊活性材料(内参比),即二茂铁|二茂铁离子、二茂钴|二茂钴离子或其衍生物所组成的氧化还原对[16 ] .这种内参比体系往往具有较大的尺寸能够离域电荷,从而削弱不同体系中溶剂化作用对其基准电位的影响[50 ] ,因此也被国际纯粹与应用化学联合会推荐用作电势校正.然而,由于这些氧化还原对的电化学和化学活性[51 ] ,内参比在锂电池中的应用较少[52 ] ,更多情况下是作为通用的基准来比较不同电解液体系间的电位差异[38 ] . ...
1
... 参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
1
... 参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
1
... 参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
3
... 参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
... [38 ,41 ]通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
... 锂合金也是一种常见的参比电极活性材料,它们的对锂电位在0~1 V,这在一定程度上可以缓解电解液的分解,从而弱化SEI的影响[8 ] .值得注意的是,锂合金通常具有多段相区间,在每一段两相区内锂合金具有不同的平衡电位,应当确保合金参比电极处于特定的、具有宽化学计量范围的两相区域,使其对应电位能够在长期使用过程中保持稳定[24 ,34 ] .此外,当在电池中对锂合金参比电极进行原位锂化或恢复时,应注意合金化过程所产生的体积变化,因为这不仅可能导致参比电极的结构失效,产生的局部应力还极易破坏电极甚至使电池短路.另一类活性材料是锂嵌入氧化物,包括Li4 Ti5 O12 (LTO)和LiFePO4 (LFP)[45 -48 ] .由于两相反应机制,它们分别在1.5 V和3.4 V附近具有稳定的电位平台[49 ] .与合金类似,在制备和恢复此类参比电极时,应将其荷电状态保持在平台区域.相较于LFP材料,LTO对湿度较为敏感,但其适中的平台电位具有更广泛的电解液兼容性,是较为常用的参比电极活性材料,而LFP容易在氧化稳定性差的醚类电解液中失效.除了上述几种常见的参比电极活性材料外,还有一类需要溶解到电解液中才能发挥作用的特殊活性材料(内参比),即二茂铁|二茂铁离子、二茂钴|二茂钴离子或其衍生物所组成的氧化还原对[16 ] .这种内参比体系往往具有较大的尺寸能够离域电荷,从而削弱不同体系中溶剂化作用对其基准电位的影响[50 ] ,因此也被国际纯粹与应用化学联合会推荐用作电势校正.然而,由于这些氧化还原对的电化学和化学活性[51 ] ,内参比在锂电池中的应用较少[52 ] ,更多情况下是作为通用的基准来比较不同电解液体系间的电位差异[38 ] . ...
2
... 参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
... 参比电极的制备工艺大体上可分为非原位和原位两大类,不同工艺的选择对其质量有很大影响.对于金属锂类的参比电极,既可以采用非原位的熔融、辊压或卷绕方法制备,也可以在电池内与锂源构成回路进行原位电沉积,后者避免了前者在微型化操作方面的挑战,但需要仔细选择电沉积参数以获得高质量的锂沉积层[39 ] .Zhou等[22 ] 提出了一种两步沉积法,分别从参比电极两侧均匀地将锂沉积到集流体上,并揭示了电沉积容量和电流密度对参比电极电位稳定性的显著影响:随着沉积层厚度从1 μm提升到4 μm,电流密度从1 mA/cm2 降低到0.2 mA/cm2 ,参比电极寿命分别延长1500 h和800 h,电位稳定性也显著提高.这说明沉积容量是保证电位稳定性的先决条件,在一定沉积容量下再调整沉积电流可改善沉积层质量,从而进一步推迟基准电位偏移的发生.此外,电解质配方的优化对于提高电沉积金属锂参比电极的质量也至关重要[60 ] .对于另外两类材料,它们均需进行原位激活处理:两相反应类参比电极需要先涂覆再进行化成,片状参比还需要进一步成型[61 ] ,而合金类参比电极则可直接对相应集流体进行锂化[62 ] .因此对于前者来说,涂覆的浆料配方、成型方式以及化成过程中的相关参数都是决定参比电极可靠性的关键,这增加了基于两相反应材料制备稳定参比电极的难度.而对于后者来说,需要在合金化过程中着重注意温度、锂化程度等参数[24 ] . ...
1
... 参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
1
... 参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
1
... 参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
1
... 参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
1
... 参比电极的选材直接决定了其热力学平衡电位、环境稳定性和使用寿命等内在性质.目前,锂电池中可选的参比电极活性材料包括金属锂、锂合金和锂嵌入氧化物[8 ,33 -35 ] .其中,金属锂由于快速的电极反应动力学和简洁的形式已成为参比电极活性材料的首选[19 ] .在金属锂沉积/脱出的电极反应中,具有较小半径的锂离子对极性溶剂分子的相互作用十分敏感,会与之形成不同的溶剂化配位结构并释放或吸收不同的溶剂化能,直接导致锂离子活度的改变,进而影响金属锂参比电极电位[36 -37 ] .据报道,在不同的电解质中该电极电位差异可达0.6 V[38 ] .另外,金属锂最负的电极电势使其具有较强的还原能力,几乎对所有电解质都不稳定,导致固态电解质界面层(solid electrolyte interphase,SEI)的形成[39 -40 ] .尽管一些文献[38 ,41 ] 通过理论分析认为SEI不会影响锂电极检测电位,但是所形成的界面的确有可能改变原始体相锂离子的溶剂化/脱溶剂化行为,进而使参比电极电位偏移.此时,检测到的电极电位更倾向于是对Li|SEI/Li+ 的而不是对Li/Li+ 的[18 ,42 ] .鉴于上述因素,金属锂并不适合作为通用的参比电极去进行不同体系间的比较,但在一定电解质体系中金属锂参比电极本身仍具有可靠性,并且由于更高的含锂量,基于金属锂的参比电极往往也具有更高的静态和动态寿命.此外,金属锂电极在加工和应用方面也存在挑战.比如对湿空气敏感的金属锂对参比电极的制备、储存和运输提出了更高的要求[43 ] ;来自正负极的副产物和溶出物质也容易毒化金属锂参比电极并加速其失效[14 ] .比较好的解决方法是通过封装来提升金属锂参比电极的湿空气和腐蚀性电解液稳定性[44 ] . ...
1
... 锂合金也是一种常见的参比电极活性材料,它们的对锂电位在0~1 V,这在一定程度上可以缓解电解液的分解,从而弱化SEI的影响[8 ] .值得注意的是,锂合金通常具有多段相区间,在每一段两相区内锂合金具有不同的平衡电位,应当确保合金参比电极处于特定的、具有宽化学计量范围的两相区域,使其对应电位能够在长期使用过程中保持稳定[24 ,34 ] .此外,当在电池中对锂合金参比电极进行原位锂化或恢复时,应注意合金化过程所产生的体积变化,因为这不仅可能导致参比电极的结构失效,产生的局部应力还极易破坏电极甚至使电池短路.另一类活性材料是锂嵌入氧化物,包括Li4 Ti5 O12 (LTO)和LiFePO4 (LFP)[45 -48 ] .由于两相反应机制,它们分别在1.5 V和3.4 V附近具有稳定的电位平台[49 ] .与合金类似,在制备和恢复此类参比电极时,应将其荷电状态保持在平台区域.相较于LFP材料,LTO对湿度较为敏感,但其适中的平台电位具有更广泛的电解液兼容性,是较为常用的参比电极活性材料,而LFP容易在氧化稳定性差的醚类电解液中失效.除了上述几种常见的参比电极活性材料外,还有一类需要溶解到电解液中才能发挥作用的特殊活性材料(内参比),即二茂铁|二茂铁离子、二茂钴|二茂钴离子或其衍生物所组成的氧化还原对[16 ] .这种内参比体系往往具有较大的尺寸能够离域电荷,从而削弱不同体系中溶剂化作用对其基准电位的影响[50 ] ,因此也被国际纯粹与应用化学联合会推荐用作电势校正.然而,由于这些氧化还原对的电化学和化学活性[51 ] ,内参比在锂电池中的应用较少[52 ] ,更多情况下是作为通用的基准来比较不同电解液体系间的电位差异[38 ] . ...
1
... 锂合金也是一种常见的参比电极活性材料,它们的对锂电位在0~1 V,这在一定程度上可以缓解电解液的分解,从而弱化SEI的影响[8 ] .值得注意的是,锂合金通常具有多段相区间,在每一段两相区内锂合金具有不同的平衡电位,应当确保合金参比电极处于特定的、具有宽化学计量范围的两相区域,使其对应电位能够在长期使用过程中保持稳定[24 ,34 ] .此外,当在电池中对锂合金参比电极进行原位锂化或恢复时,应注意合金化过程所产生的体积变化,因为这不仅可能导致参比电极的结构失效,产生的局部应力还极易破坏电极甚至使电池短路.另一类活性材料是锂嵌入氧化物,包括Li4 Ti5 O12 (LTO)和LiFePO4 (LFP)[45 -48 ] .由于两相反应机制,它们分别在1.5 V和3.4 V附近具有稳定的电位平台[49 ] .与合金类似,在制备和恢复此类参比电极时,应将其荷电状态保持在平台区域.相较于LFP材料,LTO对湿度较为敏感,但其适中的平台电位具有更广泛的电解液兼容性,是较为常用的参比电极活性材料,而LFP容易在氧化稳定性差的醚类电解液中失效.除了上述几种常见的参比电极活性材料外,还有一类需要溶解到电解液中才能发挥作用的特殊活性材料(内参比),即二茂铁|二茂铁离子、二茂钴|二茂钴离子或其衍生物所组成的氧化还原对[16 ] .这种内参比体系往往具有较大的尺寸能够离域电荷,从而削弱不同体系中溶剂化作用对其基准电位的影响[50 ] ,因此也被国际纯粹与应用化学联合会推荐用作电势校正.然而,由于这些氧化还原对的电化学和化学活性[51 ] ,内参比在锂电池中的应用较少[52 ] ,更多情况下是作为通用的基准来比较不同电解液体系间的电位差异[38 ] . ...
1
... 锂合金也是一种常见的参比电极活性材料,它们的对锂电位在0~1 V,这在一定程度上可以缓解电解液的分解,从而弱化SEI的影响[8 ] .值得注意的是,锂合金通常具有多段相区间,在每一段两相区内锂合金具有不同的平衡电位,应当确保合金参比电极处于特定的、具有宽化学计量范围的两相区域,使其对应电位能够在长期使用过程中保持稳定[24 ,34 ] .此外,当在电池中对锂合金参比电极进行原位锂化或恢复时,应注意合金化过程所产生的体积变化,因为这不仅可能导致参比电极的结构失效,产生的局部应力还极易破坏电极甚至使电池短路.另一类活性材料是锂嵌入氧化物,包括Li4 Ti5 O12 (LTO)和LiFePO4 (LFP)[45 -48 ] .由于两相反应机制,它们分别在1.5 V和3.4 V附近具有稳定的电位平台[49 ] .与合金类似,在制备和恢复此类参比电极时,应将其荷电状态保持在平台区域.相较于LFP材料,LTO对湿度较为敏感,但其适中的平台电位具有更广泛的电解液兼容性,是较为常用的参比电极活性材料,而LFP容易在氧化稳定性差的醚类电解液中失效.除了上述几种常见的参比电极活性材料外,还有一类需要溶解到电解液中才能发挥作用的特殊活性材料(内参比),即二茂铁|二茂铁离子、二茂钴|二茂钴离子或其衍生物所组成的氧化还原对[16 ] .这种内参比体系往往具有较大的尺寸能够离域电荷,从而削弱不同体系中溶剂化作用对其基准电位的影响[50 ] ,因此也被国际纯粹与应用化学联合会推荐用作电势校正.然而,由于这些氧化还原对的电化学和化学活性[51 ] ,内参比在锂电池中的应用较少[52 ] ,更多情况下是作为通用的基准来比较不同电解液体系间的电位差异[38 ] . ...
1
... 锂合金也是一种常见的参比电极活性材料,它们的对锂电位在0~1 V,这在一定程度上可以缓解电解液的分解,从而弱化SEI的影响[8 ] .值得注意的是,锂合金通常具有多段相区间,在每一段两相区内锂合金具有不同的平衡电位,应当确保合金参比电极处于特定的、具有宽化学计量范围的两相区域,使其对应电位能够在长期使用过程中保持稳定[24 ,34 ] .此外,当在电池中对锂合金参比电极进行原位锂化或恢复时,应注意合金化过程所产生的体积变化,因为这不仅可能导致参比电极的结构失效,产生的局部应力还极易破坏电极甚至使电池短路.另一类活性材料是锂嵌入氧化物,包括Li4 Ti5 O12 (LTO)和LiFePO4 (LFP)[45 -48 ] .由于两相反应机制,它们分别在1.5 V和3.4 V附近具有稳定的电位平台[49 ] .与合金类似,在制备和恢复此类参比电极时,应将其荷电状态保持在平台区域.相较于LFP材料,LTO对湿度较为敏感,但其适中的平台电位具有更广泛的电解液兼容性,是较为常用的参比电极活性材料,而LFP容易在氧化稳定性差的醚类电解液中失效.除了上述几种常见的参比电极活性材料外,还有一类需要溶解到电解液中才能发挥作用的特殊活性材料(内参比),即二茂铁|二茂铁离子、二茂钴|二茂钴离子或其衍生物所组成的氧化还原对[16 ] .这种内参比体系往往具有较大的尺寸能够离域电荷,从而削弱不同体系中溶剂化作用对其基准电位的影响[50 ] ,因此也被国际纯粹与应用化学联合会推荐用作电势校正.然而,由于这些氧化还原对的电化学和化学活性[51 ] ,内参比在锂电池中的应用较少[52 ] ,更多情况下是作为通用的基准来比较不同电解液体系间的电位差异[38 ] . ...
1
... 锂合金也是一种常见的参比电极活性材料,它们的对锂电位在0~1 V,这在一定程度上可以缓解电解液的分解,从而弱化SEI的影响[8 ] .值得注意的是,锂合金通常具有多段相区间,在每一段两相区内锂合金具有不同的平衡电位,应当确保合金参比电极处于特定的、具有宽化学计量范围的两相区域,使其对应电位能够在长期使用过程中保持稳定[24 ,34 ] .此外,当在电池中对锂合金参比电极进行原位锂化或恢复时,应注意合金化过程所产生的体积变化,因为这不仅可能导致参比电极的结构失效,产生的局部应力还极易破坏电极甚至使电池短路.另一类活性材料是锂嵌入氧化物,包括Li4 Ti5 O12 (LTO)和LiFePO4 (LFP)[45 -48 ] .由于两相反应机制,它们分别在1.5 V和3.4 V附近具有稳定的电位平台[49 ] .与合金类似,在制备和恢复此类参比电极时,应将其荷电状态保持在平台区域.相较于LFP材料,LTO对湿度较为敏感,但其适中的平台电位具有更广泛的电解液兼容性,是较为常用的参比电极活性材料,而LFP容易在氧化稳定性差的醚类电解液中失效.除了上述几种常见的参比电极活性材料外,还有一类需要溶解到电解液中才能发挥作用的特殊活性材料(内参比),即二茂铁|二茂铁离子、二茂钴|二茂钴离子或其衍生物所组成的氧化还原对[16 ] .这种内参比体系往往具有较大的尺寸能够离域电荷,从而削弱不同体系中溶剂化作用对其基准电位的影响[50 ] ,因此也被国际纯粹与应用化学联合会推荐用作电势校正.然而,由于这些氧化还原对的电化学和化学活性[51 ] ,内参比在锂电池中的应用较少[52 ] ,更多情况下是作为通用的基准来比较不同电解液体系间的电位差异[38 ] . ...
1
... 锂合金也是一种常见的参比电极活性材料,它们的对锂电位在0~1 V,这在一定程度上可以缓解电解液的分解,从而弱化SEI的影响[8 ] .值得注意的是,锂合金通常具有多段相区间,在每一段两相区内锂合金具有不同的平衡电位,应当确保合金参比电极处于特定的、具有宽化学计量范围的两相区域,使其对应电位能够在长期使用过程中保持稳定[24 ,34 ] .此外,当在电池中对锂合金参比电极进行原位锂化或恢复时,应注意合金化过程所产生的体积变化,因为这不仅可能导致参比电极的结构失效,产生的局部应力还极易破坏电极甚至使电池短路.另一类活性材料是锂嵌入氧化物,包括Li4 Ti5 O12 (LTO)和LiFePO4 (LFP)[45 -48 ] .由于两相反应机制,它们分别在1.5 V和3.4 V附近具有稳定的电位平台[49 ] .与合金类似,在制备和恢复此类参比电极时,应将其荷电状态保持在平台区域.相较于LFP材料,LTO对湿度较为敏感,但其适中的平台电位具有更广泛的电解液兼容性,是较为常用的参比电极活性材料,而LFP容易在氧化稳定性差的醚类电解液中失效.除了上述几种常见的参比电极活性材料外,还有一类需要溶解到电解液中才能发挥作用的特殊活性材料(内参比),即二茂铁|二茂铁离子、二茂钴|二茂钴离子或其衍生物所组成的氧化还原对[16 ] .这种内参比体系往往具有较大的尺寸能够离域电荷,从而削弱不同体系中溶剂化作用对其基准电位的影响[50 ] ,因此也被国际纯粹与应用化学联合会推荐用作电势校正.然而,由于这些氧化还原对的电化学和化学活性[51 ] ,内参比在锂电池中的应用较少[52 ] ,更多情况下是作为通用的基准来比较不同电解液体系间的电位差异[38 ] . ...
2
... 参比电极形式多样,适配于不同的电池构型,例如特制电池中的点状、环状参比电极,纽扣电池中的线状参比电极以及软包、圆柱和方壳等实用电池中的条形或网状参比电极等[53 -54 ] .总的来说,参比电极的插入应尽量减少对原始电池的干扰[55 ] .点状和线状参比电极体积较小,对电池内部离子传输影响不大,并且采样梯度范围较小有利于精准检测.此外,更小的暴露面积也会减缓活性材料的腐蚀和失效.然而,点状和线状参比电极较小的体积更容易导致三电极电池内部受力不均,存在极片破损和电池短路的风险[11 ] .在这方面,片状和网状参比电极的引入有助于均匀化应力分布,但较大的几何面积会增大电池内阻,极大地影响电池的倍率性能[56 ] .因此需要结合理论计算对开孔面积和分布进行优化,尽可能弱化参比电极对电池的入侵影响[57 ] .实际上如Li等[58 ] 所述,即使对于面积较小的线参比电极,其也会因阻塞效应产生检测误差[59 ] ——在电池动态循环过程中,额外引入的参比电极会阻碍离子输运,增大电解质浓度梯度[图2 (a)],不仅改变欧姆压降还会影响电极表面的反应电流,从而干扰工作电极电位的准确检测.Simon等[26 ] 基于有限元方法模拟评估了不同直径线状参比电极的检测可靠性,他们通过比较电极界面阻抗比(Z int,1 /Z int,2 )和反应传递系数(α )的模拟值和理想值来分析参比电极检测精度.如图2 (b)所示,当参比电极直径小于10 μm时,两者偏差几乎可以忽略,然而实际制备和使用如此微型的参比电极仍具有较大挑战. ...
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 参比电极形式多样,适配于不同的电池构型,例如特制电池中的点状、环状参比电极,纽扣电池中的线状参比电极以及软包、圆柱和方壳等实用电池中的条形或网状参比电极等[53 -54 ] .总的来说,参比电极的插入应尽量减少对原始电池的干扰[55 ] .点状和线状参比电极体积较小,对电池内部离子传输影响不大,并且采样梯度范围较小有利于精准检测.此外,更小的暴露面积也会减缓活性材料的腐蚀和失效.然而,点状和线状参比电极较小的体积更容易导致三电极电池内部受力不均,存在极片破损和电池短路的风险[11 ] .在这方面,片状和网状参比电极的引入有助于均匀化应力分布,但较大的几何面积会增大电池内阻,极大地影响电池的倍率性能[56 ] .因此需要结合理论计算对开孔面积和分布进行优化,尽可能弱化参比电极对电池的入侵影响[57 ] .实际上如Li等[58 ] 所述,即使对于面积较小的线参比电极,其也会因阻塞效应产生检测误差[59 ] ——在电池动态循环过程中,额外引入的参比电极会阻碍离子输运,增大电解质浓度梯度[图2 (a)],不仅改变欧姆压降还会影响电极表面的反应电流,从而干扰工作电极电位的准确检测.Simon等[26 ] 基于有限元方法模拟评估了不同直径线状参比电极的检测可靠性,他们通过比较电极界面阻抗比(Z int,1 /Z int,2 )和反应传递系数(α )的模拟值和理想值来分析参比电极检测精度.如图2 (b)所示,当参比电极直径小于10 μm时,两者偏差几乎可以忽略,然而实际制备和使用如此微型的参比电极仍具有较大挑战. ...
1
... 参比电极形式多样,适配于不同的电池构型,例如特制电池中的点状、环状参比电极,纽扣电池中的线状参比电极以及软包、圆柱和方壳等实用电池中的条形或网状参比电极等[53 -54 ] .总的来说,参比电极的插入应尽量减少对原始电池的干扰[55 ] .点状和线状参比电极体积较小,对电池内部离子传输影响不大,并且采样梯度范围较小有利于精准检测.此外,更小的暴露面积也会减缓活性材料的腐蚀和失效.然而,点状和线状参比电极较小的体积更容易导致三电极电池内部受力不均,存在极片破损和电池短路的风险[11 ] .在这方面,片状和网状参比电极的引入有助于均匀化应力分布,但较大的几何面积会增大电池内阻,极大地影响电池的倍率性能[56 ] .因此需要结合理论计算对开孔面积和分布进行优化,尽可能弱化参比电极对电池的入侵影响[57 ] .实际上如Li等[58 ] 所述,即使对于面积较小的线参比电极,其也会因阻塞效应产生检测误差[59 ] ——在电池动态循环过程中,额外引入的参比电极会阻碍离子输运,增大电解质浓度梯度[图2 (a)],不仅改变欧姆压降还会影响电极表面的反应电流,从而干扰工作电极电位的准确检测.Simon等[26 ] 基于有限元方法模拟评估了不同直径线状参比电极的检测可靠性,他们通过比较电极界面阻抗比(Z int,1 /Z int,2 )和反应传递系数(α )的模拟值和理想值来分析参比电极检测精度.如图2 (b)所示,当参比电极直径小于10 μm时,两者偏差几乎可以忽略,然而实际制备和使用如此微型的参比电极仍具有较大挑战. ...
1
... 参比电极形式多样,适配于不同的电池构型,例如特制电池中的点状、环状参比电极,纽扣电池中的线状参比电极以及软包、圆柱和方壳等实用电池中的条形或网状参比电极等[53 -54 ] .总的来说,参比电极的插入应尽量减少对原始电池的干扰[55 ] .点状和线状参比电极体积较小,对电池内部离子传输影响不大,并且采样梯度范围较小有利于精准检测.此外,更小的暴露面积也会减缓活性材料的腐蚀和失效.然而,点状和线状参比电极较小的体积更容易导致三电极电池内部受力不均,存在极片破损和电池短路的风险[11 ] .在这方面,片状和网状参比电极的引入有助于均匀化应力分布,但较大的几何面积会增大电池内阻,极大地影响电池的倍率性能[56 ] .因此需要结合理论计算对开孔面积和分布进行优化,尽可能弱化参比电极对电池的入侵影响[57 ] .实际上如Li等[58 ] 所述,即使对于面积较小的线参比电极,其也会因阻塞效应产生检测误差[59 ] ——在电池动态循环过程中,额外引入的参比电极会阻碍离子输运,增大电解质浓度梯度[图2 (a)],不仅改变欧姆压降还会影响电极表面的反应电流,从而干扰工作电极电位的准确检测.Simon等[26 ] 基于有限元方法模拟评估了不同直径线状参比电极的检测可靠性,他们通过比较电极界面阻抗比(Z int,1 /Z int,2 )和反应传递系数(α )的模拟值和理想值来分析参比电极检测精度.如图2 (b)所示,当参比电极直径小于10 μm时,两者偏差几乎可以忽略,然而实际制备和使用如此微型的参比电极仍具有较大挑战. ...
3
... 参比电极形式多样,适配于不同的电池构型,例如特制电池中的点状、环状参比电极,纽扣电池中的线状参比电极以及软包、圆柱和方壳等实用电池中的条形或网状参比电极等[53 -54 ] .总的来说,参比电极的插入应尽量减少对原始电池的干扰[55 ] .点状和线状参比电极体积较小,对电池内部离子传输影响不大,并且采样梯度范围较小有利于精准检测.此外,更小的暴露面积也会减缓活性材料的腐蚀和失效.然而,点状和线状参比电极较小的体积更容易导致三电极电池内部受力不均,存在极片破损和电池短路的风险[11 ] .在这方面,片状和网状参比电极的引入有助于均匀化应力分布,但较大的几何面积会增大电池内阻,极大地影响电池的倍率性能[56 ] .因此需要结合理论计算对开孔面积和分布进行优化,尽可能弱化参比电极对电池的入侵影响[57 ] .实际上如Li等[58 ] 所述,即使对于面积较小的线参比电极,其也会因阻塞效应产生检测误差[59 ] ——在电池动态循环过程中,额外引入的参比电极会阻碍离子输运,增大电解质浓度梯度[图2 (a)],不仅改变欧姆压降还会影响电极表面的反应电流,从而干扰工作电极电位的准确检测.Simon等[26 ] 基于有限元方法模拟评估了不同直径线状参比电极的检测可靠性,他们通过比较电极界面阻抗比(Z int,1 /Z int,2 )和反应传递系数(α )的模拟值和理想值来分析参比电极检测精度.如图2 (b)所示,当参比电极直径小于10 μm时,两者偏差几乎可以忽略,然而实际制备和使用如此微型的参比电极仍具有较大挑战. ...
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
... [57 ,66 ]等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 参比电极形式多样,适配于不同的电池构型,例如特制电池中的点状、环状参比电极,纽扣电池中的线状参比电极以及软包、圆柱和方壳等实用电池中的条形或网状参比电极等[53 -54 ] .总的来说,参比电极的插入应尽量减少对原始电池的干扰[55 ] .点状和线状参比电极体积较小,对电池内部离子传输影响不大,并且采样梯度范围较小有利于精准检测.此外,更小的暴露面积也会减缓活性材料的腐蚀和失效.然而,点状和线状参比电极较小的体积更容易导致三电极电池内部受力不均,存在极片破损和电池短路的风险[11 ] .在这方面,片状和网状参比电极的引入有助于均匀化应力分布,但较大的几何面积会增大电池内阻,极大地影响电池的倍率性能[56 ] .因此需要结合理论计算对开孔面积和分布进行优化,尽可能弱化参比电极对电池的入侵影响[57 ] .实际上如Li等[58 ] 所述,即使对于面积较小的线参比电极,其也会因阻塞效应产生检测误差[59 ] ——在电池动态循环过程中,额外引入的参比电极会阻碍离子输运,增大电解质浓度梯度[图2 (a)],不仅改变欧姆压降还会影响电极表面的反应电流,从而干扰工作电极电位的准确检测.Simon等[26 ] 基于有限元方法模拟评估了不同直径线状参比电极的检测可靠性,他们通过比较电极界面阻抗比(Z int,1 /Z int,2 )和反应传递系数(α )的模拟值和理想值来分析参比电极检测精度.如图2 (b)所示,当参比电极直径小于10 μm时,两者偏差几乎可以忽略,然而实际制备和使用如此微型的参比电极仍具有较大挑战. ...
3
... 参比电极形式多样,适配于不同的电池构型,例如特制电池中的点状、环状参比电极,纽扣电池中的线状参比电极以及软包、圆柱和方壳等实用电池中的条形或网状参比电极等[53 -54 ] .总的来说,参比电极的插入应尽量减少对原始电池的干扰[55 ] .点状和线状参比电极体积较小,对电池内部离子传输影响不大,并且采样梯度范围较小有利于精准检测.此外,更小的暴露面积也会减缓活性材料的腐蚀和失效.然而,点状和线状参比电极较小的体积更容易导致三电极电池内部受力不均,存在极片破损和电池短路的风险[11 ] .在这方面,片状和网状参比电极的引入有助于均匀化应力分布,但较大的几何面积会增大电池内阻,极大地影响电池的倍率性能[56 ] .因此需要结合理论计算对开孔面积和分布进行优化,尽可能弱化参比电极对电池的入侵影响[57 ] .实际上如Li等[58 ] 所述,即使对于面积较小的线参比电极,其也会因阻塞效应产生检测误差[59 ] ——在电池动态循环过程中,额外引入的参比电极会阻碍离子输运,增大电解质浓度梯度[图2 (a)],不仅改变欧姆压降还会影响电极表面的反应电流,从而干扰工作电极电位的准确检测.Simon等[26 ] 基于有限元方法模拟评估了不同直径线状参比电极的检测可靠性,他们通过比较电极界面阻抗比(Z int,1 /Z int,2 )和反应传递系数(α )的模拟值和理想值来分析参比电极检测精度.如图2 (b)所示,当参比电极直径小于10 μm时,两者偏差几乎可以忽略,然而实际制备和使用如此微型的参比电极仍具有较大挑战. ...
... [
59 ];
(b) 直径依赖的参比电极质量的模拟评估结果
[26 ] (a) Electrolyte concentration evolution in the vicinity of the reference electrode at 0.5 C[59 ] ; (b) Simulated evaluation results of the diameter-dependent reference electrode quality[26 ] Fig. 2 ![]()
1.3 制备工艺参比电极的制备工艺大体上可分为非原位和原位两大类,不同工艺的选择对其质量有很大影响.对于金属锂类的参比电极,既可以采用非原位的熔融、辊压或卷绕方法制备,也可以在电池内与锂源构成回路进行原位电沉积,后者避免了前者在微型化操作方面的挑战,但需要仔细选择电沉积参数以获得高质量的锂沉积层[39 ] .Zhou等[22 ] 提出了一种两步沉积法,分别从参比电极两侧均匀地将锂沉积到集流体上,并揭示了电沉积容量和电流密度对参比电极电位稳定性的显著影响:随着沉积层厚度从1 μm提升到4 μm,电流密度从1 mA/cm2 降低到0.2 mA/cm2 ,参比电极寿命分别延长1500 h和800 h,电位稳定性也显著提高.这说明沉积容量是保证电位稳定性的先决条件,在一定沉积容量下再调整沉积电流可改善沉积层质量,从而进一步推迟基准电位偏移的发生.此外,电解质配方的优化对于提高电沉积金属锂参比电极的质量也至关重要[60 ] .对于另外两类材料,它们均需进行原位激活处理:两相反应类参比电极需要先涂覆再进行化成,片状参比还需要进一步成型[61 ] ,而合金类参比电极则可直接对相应集流体进行锂化[62 ] .因此对于前者来说,涂覆的浆料配方、成型方式以及化成过程中的相关参数都是决定参比电极可靠性的关键,这增加了基于两相反应材料制备稳定参比电极的难度.而对于后者来说,需要在合金化过程中着重注意温度、锂化程度等参数[24 ] . ...
... [
59 ]; (b) Simulated evaluation results of the diameter-dependent reference electrode quality
[26 ] Fig. 2 ![]()
1.3 制备工艺参比电极的制备工艺大体上可分为非原位和原位两大类,不同工艺的选择对其质量有很大影响.对于金属锂类的参比电极,既可以采用非原位的熔融、辊压或卷绕方法制备,也可以在电池内与锂源构成回路进行原位电沉积,后者避免了前者在微型化操作方面的挑战,但需要仔细选择电沉积参数以获得高质量的锂沉积层[39 ] .Zhou等[22 ] 提出了一种两步沉积法,分别从参比电极两侧均匀地将锂沉积到集流体上,并揭示了电沉积容量和电流密度对参比电极电位稳定性的显著影响:随着沉积层厚度从1 μm提升到4 μm,电流密度从1 mA/cm2 降低到0.2 mA/cm2 ,参比电极寿命分别延长1500 h和800 h,电位稳定性也显著提高.这说明沉积容量是保证电位稳定性的先决条件,在一定沉积容量下再调整沉积电流可改善沉积层质量,从而进一步推迟基准电位偏移的发生.此外,电解质配方的优化对于提高电沉积金属锂参比电极的质量也至关重要[60 ] .对于另外两类材料,它们均需进行原位激活处理:两相反应类参比电极需要先涂覆再进行化成,片状参比还需要进一步成型[61 ] ,而合金类参比电极则可直接对相应集流体进行锂化[62 ] .因此对于前者来说,涂覆的浆料配方、成型方式以及化成过程中的相关参数都是决定参比电极可靠性的关键,这增加了基于两相反应材料制备稳定参比电极的难度.而对于后者来说,需要在合金化过程中着重注意温度、锂化程度等参数[24 ] . ...
1
... 参比电极的制备工艺大体上可分为非原位和原位两大类,不同工艺的选择对其质量有很大影响.对于金属锂类的参比电极,既可以采用非原位的熔融、辊压或卷绕方法制备,也可以在电池内与锂源构成回路进行原位电沉积,后者避免了前者在微型化操作方面的挑战,但需要仔细选择电沉积参数以获得高质量的锂沉积层[39 ] .Zhou等[22 ] 提出了一种两步沉积法,分别从参比电极两侧均匀地将锂沉积到集流体上,并揭示了电沉积容量和电流密度对参比电极电位稳定性的显著影响:随着沉积层厚度从1 μm提升到4 μm,电流密度从1 mA/cm2 降低到0.2 mA/cm2 ,参比电极寿命分别延长1500 h和800 h,电位稳定性也显著提高.这说明沉积容量是保证电位稳定性的先决条件,在一定沉积容量下再调整沉积电流可改善沉积层质量,从而进一步推迟基准电位偏移的发生.此外,电解质配方的优化对于提高电沉积金属锂参比电极的质量也至关重要[60 ] .对于另外两类材料,它们均需进行原位激活处理:两相反应类参比电极需要先涂覆再进行化成,片状参比还需要进一步成型[61 ] ,而合金类参比电极则可直接对相应集流体进行锂化[62 ] .因此对于前者来说,涂覆的浆料配方、成型方式以及化成过程中的相关参数都是决定参比电极可靠性的关键,这增加了基于两相反应材料制备稳定参比电极的难度.而对于后者来说,需要在合金化过程中着重注意温度、锂化程度等参数[24 ] . ...
1
... 参比电极的制备工艺大体上可分为非原位和原位两大类,不同工艺的选择对其质量有很大影响.对于金属锂类的参比电极,既可以采用非原位的熔融、辊压或卷绕方法制备,也可以在电池内与锂源构成回路进行原位电沉积,后者避免了前者在微型化操作方面的挑战,但需要仔细选择电沉积参数以获得高质量的锂沉积层[39 ] .Zhou等[22 ] 提出了一种两步沉积法,分别从参比电极两侧均匀地将锂沉积到集流体上,并揭示了电沉积容量和电流密度对参比电极电位稳定性的显著影响:随着沉积层厚度从1 μm提升到4 μm,电流密度从1 mA/cm2 降低到0.2 mA/cm2 ,参比电极寿命分别延长1500 h和800 h,电位稳定性也显著提高.这说明沉积容量是保证电位稳定性的先决条件,在一定沉积容量下再调整沉积电流可改善沉积层质量,从而进一步推迟基准电位偏移的发生.此外,电解质配方的优化对于提高电沉积金属锂参比电极的质量也至关重要[60 ] .对于另外两类材料,它们均需进行原位激活处理:两相反应类参比电极需要先涂覆再进行化成,片状参比还需要进一步成型[61 ] ,而合金类参比电极则可直接对相应集流体进行锂化[62 ] .因此对于前者来说,涂覆的浆料配方、成型方式以及化成过程中的相关参数都是决定参比电极可靠性的关键,这增加了基于两相反应材料制备稳定参比电极的难度.而对于后者来说,需要在合金化过程中着重注意温度、锂化程度等参数[24 ] . ...
1
... 参比电极的制备工艺大体上可分为非原位和原位两大类,不同工艺的选择对其质量有很大影响.对于金属锂类的参比电极,既可以采用非原位的熔融、辊压或卷绕方法制备,也可以在电池内与锂源构成回路进行原位电沉积,后者避免了前者在微型化操作方面的挑战,但需要仔细选择电沉积参数以获得高质量的锂沉积层[39 ] .Zhou等[22 ] 提出了一种两步沉积法,分别从参比电极两侧均匀地将锂沉积到集流体上,并揭示了电沉积容量和电流密度对参比电极电位稳定性的显著影响:随着沉积层厚度从1 μm提升到4 μm,电流密度从1 mA/cm2 降低到0.2 mA/cm2 ,参比电极寿命分别延长1500 h和800 h,电位稳定性也显著提高.这说明沉积容量是保证电位稳定性的先决条件,在一定沉积容量下再调整沉积电流可改善沉积层质量,从而进一步推迟基准电位偏移的发生.此外,电解质配方的优化对于提高电沉积金属锂参比电极的质量也至关重要[60 ] .对于另外两类材料,它们均需进行原位激活处理:两相反应类参比电极需要先涂覆再进行化成,片状参比还需要进一步成型[61 ] ,而合金类参比电极则可直接对相应集流体进行锂化[62 ] .因此对于前者来说,涂覆的浆料配方、成型方式以及化成过程中的相关参数都是决定参比电极可靠性的关键,这增加了基于两相反应材料制备稳定参比电极的难度.而对于后者来说,需要在合金化过程中着重注意温度、锂化程度等参数[24 ] . ...
1
... 在参比电极的制备中原电池腐蚀问题常常被忽略,这是一种发生在两种电接触并处于相同电解质环境的、活泼性不同的金属之间的腐蚀现象[63 ] .整体相当于一个短路的原电池,两者的化学势差会驱动电子迁移加速电极失效[64 ] .对于参比电极来说,集流体和活性材料两者必定要电接触,又可能暴露于同一电解液环境中,且通常各自的平衡电位相差较大,非常容易使电位较低的活性材料失去电子并脱出锂离子,而电解质会在集流体上获得传导来的电子被还原成SEI.鉴于参比电极上有限的活性材料载量,应尽可能阻断原电池腐蚀路径,比如减小集流体暴露面积、进行绝缘化处理等,以延长参比电极服役寿命.此外,Liu等[65 ] 揭示了离子流场中孤立锂的空间渐进行为,即在电池动态循环中,离子流会在内部电极两侧产生电势差,从而同时引发锂在其一侧沉积,在另一侧脱出的行为,导致孤立锂的再分布现象.在实验中该现象对于参比电极的检测准确性以及结构稳定性有着显著的不利影响,而在离子流场外侧该影响却被极大地抑制,相关内容我们会在之后的文章中进行详细的报道. ...
1
... 在参比电极的制备中原电池腐蚀问题常常被忽略,这是一种发生在两种电接触并处于相同电解质环境的、活泼性不同的金属之间的腐蚀现象[63 ] .整体相当于一个短路的原电池,两者的化学势差会驱动电子迁移加速电极失效[64 ] .对于参比电极来说,集流体和活性材料两者必定要电接触,又可能暴露于同一电解液环境中,且通常各自的平衡电位相差较大,非常容易使电位较低的活性材料失去电子并脱出锂离子,而电解质会在集流体上获得传导来的电子被还原成SEI.鉴于参比电极上有限的活性材料载量,应尽可能阻断原电池腐蚀路径,比如减小集流体暴露面积、进行绝缘化处理等,以延长参比电极服役寿命.此外,Liu等[65 ] 揭示了离子流场中孤立锂的空间渐进行为,即在电池动态循环中,离子流会在内部电极两侧产生电势差,从而同时引发锂在其一侧沉积,在另一侧脱出的行为,导致孤立锂的再分布现象.在实验中该现象对于参比电极的检测准确性以及结构稳定性有着显著的不利影响,而在离子流场外侧该影响却被极大地抑制,相关内容我们会在之后的文章中进行详细的报道. ...
1
... 在参比电极的制备中原电池腐蚀问题常常被忽略,这是一种发生在两种电接触并处于相同电解质环境的、活泼性不同的金属之间的腐蚀现象[63 ] .整体相当于一个短路的原电池,两者的化学势差会驱动电子迁移加速电极失效[64 ] .对于参比电极来说,集流体和活性材料两者必定要电接触,又可能暴露于同一电解液环境中,且通常各自的平衡电位相差较大,非常容易使电位较低的活性材料失去电子并脱出锂离子,而电解质会在集流体上获得传导来的电子被还原成SEI.鉴于参比电极上有限的活性材料载量,应尽可能阻断原电池腐蚀路径,比如减小集流体暴露面积、进行绝缘化处理等,以延长参比电极服役寿命.此外,Liu等[65 ] 揭示了离子流场中孤立锂的空间渐进行为,即在电池动态循环中,离子流会在内部电极两侧产生电势差,从而同时引发锂在其一侧沉积,在另一侧脱出的行为,导致孤立锂的再分布现象.在实验中该现象对于参比电极的检测准确性以及结构稳定性有着显著的不利影响,而在离子流场外侧该影响却被极大地抑制,相关内容我们会在之后的文章中进行详细的报道. ...
2
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
... ,66 ]等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 合理的参比电极设置是发挥其价值的前提.目前,针对不同的实用电池构型,参比电极的设置多种多样,包括在软包和方壳电芯层间设置参比电极[22 ,30 ,32 ] ,在电芯外部、壳体内部插入参比电极[53 ,57 ] ,以及在圆柱电池卷芯内部植入参比电极[66 -68 ] .借鉴电催化研究中Luggin毛细管的设置,参比电极应适当靠近研究电极(但不能太过靠近而屏蔽离子传输)并处于稳定的电解质环境中[69 ] ,以降低电解质欧姆压降(iR 降)以及浓度变化对电位检测的干扰[70 ] .在实际应用中,参比电极通常被放置在正负极之间,并用隔膜或固态电解质与两电极绝缘[71 ] .与原始紧密装配的电池相比,参比电极的引入扰乱了离子通路并增大电池内阻[28 ] .于是,一些研究学者曾尝试将参比电极放置在极片侧面[72 -73 ] 、背后[74 ] 或同轴中心[75 ] 等位置[13 ] .在这种情况下,首先要确保相应位置处电解质浓度的恒定,因为这些位置往往处于非平衡状态,锂离子的补充或消解是不充分、不及时的,特别是对于大型电池来说,这种电解质的不均匀现象尤为突出[76 ] ,从而显著增强参比电极检测电位的位置敏感性.其次要注意这些设置会在三电极电化学阻抗谱(EIS)测试中引入误差[77 -78 ] .Ender等[10 ] 利用三电极对称和全电池构型并结合有限元模拟揭示出:工作电极和对电极的几何和电化学不对称性导致了EIS误差的出现,其背后的原因是电解质的分压效应致使实际施加在研究电极上的偏压发生变化.据此一方面可通过增加电解质传导来削弱这些影响,另一方面则推荐调整参比电极的设置来避免这些干扰.总之,没有一种完全理想的参比电极设置,在实际使用中应当根据具体的测试目的和电池型号来进行设置.至于参比电极的引出,当前实用电池设计中并未预留,因此常通过接极耳[27 ,79 ] 、打孔[80 ] 、开口[57 ,66 ] 等形式将参比电极集流体引出,并用树脂胶进行密封. ...
1
... 基于参比电极解耦和定量的两大功能,其应用主要涉及电位相关的测试分析[81 -82 ] 以及EIS检测[83 -84 ] .这部分着重介绍本课题组在解耦单一电极极化曲线、扩展阻抗测试以及指认电极过程速度控制步骤三方面应用参比电极的实例. ...
1
... 基于参比电极解耦和定量的两大功能,其应用主要涉及电位相关的测试分析[81 -82 ] 以及EIS检测[83 -84 ] .这部分着重介绍本课题组在解耦单一电极极化曲线、扩展阻抗测试以及指认电极过程速度控制步骤三方面应用参比电极的实例. ...
1
... 基于参比电极解耦和定量的两大功能,其应用主要涉及电位相关的测试分析[81 -82 ] 以及EIS检测[83 -84 ] .这部分着重介绍本课题组在解耦单一电极极化曲线、扩展阻抗测试以及指认电极过程速度控制步骤三方面应用参比电极的实例. ...
1
... 基于参比电极解耦和定量的两大功能,其应用主要涉及电位相关的测试分析[81 -82 ] 以及EIS检测[83 -84 ] .这部分着重介绍本课题组在解耦单一电极极化曲线、扩展阻抗测试以及指认电极过程速度控制步骤三方面应用参比电极的实例. ...
1
... 在半电池或全电池中,工作电极和对电极信号耦合在一起,无法准确指认电极的对应变化.虽然可采用对称电池构型来进行解耦,但相应的环境也发生了改变,无法真实地反映出原始体系下电极的特性.基于该认知,Yan等[85 ] 使用可拆分三电极电池分别测试了使用准固态Li3 OCl电解质和常规电解质的负极电位曲线,从全电池中解耦出负极过电位的变化.他们发现该准固态电解质层能够抑制电解液分解、稳定界面,从而显著降低负极极化.利用三电极电池构型,Yue等[86 ] 对含有不同单一溶剂的电解液进行线性扫描伏安曲线测试,鉴定不同溶剂的还原分解行为,指出溶剂在决定SEI组成和性质上的重要作用,为后文通过调节SEI电子通路来实现高效接触预锂化提供理论基础.为了获得实际循环中复合负极的过电位演变规律,Shi等[87 ] 组装三电极全电池实时监测随循环变化的负极极化曲线,提出连续转换-去插层的脱锂机理(conversion-deintercalation,CTD),即在初始循环仅有锂溶出的转换反应发生,直到复合负极的过电位达到锂化石墨的脱锂电位时,更为可逆的去插层反应将代替锂脱出反应,进而减少非活性锂的产生并抑制电池极化的快速增长(图3 ).结合恒流间歇滴定技术,Cai等[88 ] 比较了包覆石墨和未修饰石墨电极的电压滞后和欧姆极化,并根据Fick定律计算出各自的锂离子扩散系数.比较结果表明,通过包覆修饰,石墨负极拥有了更多的活性位点和离子扩散路径,大大提升了锂离子电池的倍率性能. ...
1
... 在半电池或全电池中,工作电极和对电极信号耦合在一起,无法准确指认电极的对应变化.虽然可采用对称电池构型来进行解耦,但相应的环境也发生了改变,无法真实地反映出原始体系下电极的特性.基于该认知,Yan等[85 ] 使用可拆分三电极电池分别测试了使用准固态Li3 OCl电解质和常规电解质的负极电位曲线,从全电池中解耦出负极过电位的变化.他们发现该准固态电解质层能够抑制电解液分解、稳定界面,从而显著降低负极极化.利用三电极电池构型,Yue等[86 ] 对含有不同单一溶剂的电解液进行线性扫描伏安曲线测试,鉴定不同溶剂的还原分解行为,指出溶剂在决定SEI组成和性质上的重要作用,为后文通过调节SEI电子通路来实现高效接触预锂化提供理论基础.为了获得实际循环中复合负极的过电位演变规律,Shi等[87 ] 组装三电极全电池实时监测随循环变化的负极极化曲线,提出连续转换-去插层的脱锂机理(conversion-deintercalation,CTD),即在初始循环仅有锂溶出的转换反应发生,直到复合负极的过电位达到锂化石墨的脱锂电位时,更为可逆的去插层反应将代替锂脱出反应,进而减少非活性锂的产生并抑制电池极化的快速增长(图3 ).结合恒流间歇滴定技术,Cai等[88 ] 比较了包覆石墨和未修饰石墨电极的电压滞后和欧姆极化,并根据Fick定律计算出各自的锂离子扩散系数.比较结果表明,通过包覆修饰,石墨负极拥有了更多的活性位点和离子扩散路径,大大提升了锂离子电池的倍率性能. ...
3
... 在半电池或全电池中,工作电极和对电极信号耦合在一起,无法准确指认电极的对应变化.虽然可采用对称电池构型来进行解耦,但相应的环境也发生了改变,无法真实地反映出原始体系下电极的特性.基于该认知,Yan等[85 ] 使用可拆分三电极电池分别测试了使用准固态Li3 OCl电解质和常规电解质的负极电位曲线,从全电池中解耦出负极过电位的变化.他们发现该准固态电解质层能够抑制电解液分解、稳定界面,从而显著降低负极极化.利用三电极电池构型,Yue等[86 ] 对含有不同单一溶剂的电解液进行线性扫描伏安曲线测试,鉴定不同溶剂的还原分解行为,指出溶剂在决定SEI组成和性质上的重要作用,为后文通过调节SEI电子通路来实现高效接触预锂化提供理论基础.为了获得实际循环中复合负极的过电位演变规律,Shi等[87 ] 组装三电极全电池实时监测随循环变化的负极极化曲线,提出连续转换-去插层的脱锂机理(conversion-deintercalation,CTD),即在初始循环仅有锂溶出的转换反应发生,直到复合负极的过电位达到锂化石墨的脱锂电位时,更为可逆的去插层反应将代替锂脱出反应,进而减少非活性锂的产生并抑制电池极化的快速增长(图3 ).结合恒流间歇滴定技术,Cai等[88 ] 比较了包覆石墨和未修饰石墨电极的电压滞后和欧姆极化,并根据Fick定律计算出各自的锂离子扩散系数.比较结果表明,通过包覆修饰,石墨负极拥有了更多的活性位点和离子扩散路径,大大提升了锂离子电池的倍率性能. ...
... [
87 ]
Average delithiation potentials of the composite anode changing with cycle number[87 ] Fig. 3 ![]()
作为一种电极动力学的无损诊断方法,EIS可以区分具有不同特征频率的电极过程.借助参比电极,原本两电极的耦合频率响应(一种凹陷的半椭圆——特征频率重叠导致特征半圆交叠[7 ] )能够很好地被区分,有助于深入理解电池内部的工作/失效机制.Yao等[89 ] 使用三电极设置对石墨负极进行变温EIS测试,通过对各界面过程阻抗进行Arrhenius定律拟合,真实地反映出石墨/电解液界面锂离子的脱溶剂化以及穿过SEI的能垒,印证了弱溶剂化体系中溶剂化配位结构-界面化学-电极过程动力学的构效关系,为下一代储能器件的电解液设计提供了不同的见解.快充、低温锂离子电池是当前主要的开发需求,但析锂问题一直困扰着研究学者和工业界[90 ] .析锂不仅会导致电池容量损失,枝晶状的锂沉积还容易引发电池短路[91 ] ,极大地威胁电池的安全运行[92 ] .在众多无损析锂检测技术中,基于电化学信号的诊断方法是最具实用性和可行性的.Xu等[93 ] 采用三电极电池构型对石墨负极进行暂态和阻抗分析,发现iR 降与负极的电荷转移阻抗变化趋势一致而不受欧姆和SEI阻抗的影响.由于析锂相当于在原始嵌锂反应上并联一个锂沉积过程,会导致石墨整体电荷转移阻抗降低,于是便可通过检测iR 降中R 的变化来指认析锂的发生.另外,基于析锂会增大石墨负极的电化学活性表面积(ECSA),而ECSA又与双电层电容紧密相关,借助参比电极检测石墨负极EIS虚部变化以获得电极容抗行为可以用于指示析锂的起始点[图4 (a)].更进一步,Xu等[94 ] 利用三电极设置解耦出正负极各自电极过程的响应频率范围,从而选择合适的特征频率进行单频动态电化学阻抗谱(DEIS)测试,避开了正极干扰,将该方法——动态电容检测技术扩展到实际两电极体系中,可便捷地对常规电池进行在线安全预警.最近,Xu等[95 ] 还提出了基于弛豫时间检测的原位析锂诊断技术.当析锂发生时,耦合了锂沉积和原有锂插层的整体反应被加快,导致电荷转移过程的弛豫时间降低,借助三电极快速弛豫方法对石墨负极相应的电荷转移过程进行拟合,便可获得充电过程中石墨表面反应弛豫时间的演变规律,以此建立析锂的安全边界条件,促进了快充协议的开发. ...
... [
87 ]
Fig. 3 ![]()
作为一种电极动力学的无损诊断方法,EIS可以区分具有不同特征频率的电极过程.借助参比电极,原本两电极的耦合频率响应(一种凹陷的半椭圆——特征频率重叠导致特征半圆交叠[7 ] )能够很好地被区分,有助于深入理解电池内部的工作/失效机制.Yao等[89 ] 使用三电极设置对石墨负极进行变温EIS测试,通过对各界面过程阻抗进行Arrhenius定律拟合,真实地反映出石墨/电解液界面锂离子的脱溶剂化以及穿过SEI的能垒,印证了弱溶剂化体系中溶剂化配位结构-界面化学-电极过程动力学的构效关系,为下一代储能器件的电解液设计提供了不同的见解.快充、低温锂离子电池是当前主要的开发需求,但析锂问题一直困扰着研究学者和工业界[90 ] .析锂不仅会导致电池容量损失,枝晶状的锂沉积还容易引发电池短路[91 ] ,极大地威胁电池的安全运行[92 ] .在众多无损析锂检测技术中,基于电化学信号的诊断方法是最具实用性和可行性的.Xu等[93 ] 采用三电极电池构型对石墨负极进行暂态和阻抗分析,发现iR 降与负极的电荷转移阻抗变化趋势一致而不受欧姆和SEI阻抗的影响.由于析锂相当于在原始嵌锂反应上并联一个锂沉积过程,会导致石墨整体电荷转移阻抗降低,于是便可通过检测iR 降中R 的变化来指认析锂的发生.另外,基于析锂会增大石墨负极的电化学活性表面积(ECSA),而ECSA又与双电层电容紧密相关,借助参比电极检测石墨负极EIS虚部变化以获得电极容抗行为可以用于指示析锂的起始点[图4 (a)].更进一步,Xu等[94 ] 利用三电极设置解耦出正负极各自电极过程的响应频率范围,从而选择合适的特征频率进行单频动态电化学阻抗谱(DEIS)测试,避开了正极干扰,将该方法——动态电容检测技术扩展到实际两电极体系中,可便捷地对常规电池进行在线安全预警.最近,Xu等[95 ] 还提出了基于弛豫时间检测的原位析锂诊断技术.当析锂发生时,耦合了锂沉积和原有锂插层的整体反应被加快,导致电荷转移过程的弛豫时间降低,借助三电极快速弛豫方法对石墨负极相应的电荷转移过程进行拟合,便可获得充电过程中石墨表面反应弛豫时间的演变规律,以此建立析锂的安全边界条件,促进了快充协议的开发. ...
1
... 在半电池或全电池中,工作电极和对电极信号耦合在一起,无法准确指认电极的对应变化.虽然可采用对称电池构型来进行解耦,但相应的环境也发生了改变,无法真实地反映出原始体系下电极的特性.基于该认知,Yan等[85 ] 使用可拆分三电极电池分别测试了使用准固态Li3 OCl电解质和常规电解质的负极电位曲线,从全电池中解耦出负极过电位的变化.他们发现该准固态电解质层能够抑制电解液分解、稳定界面,从而显著降低负极极化.利用三电极电池构型,Yue等[86 ] 对含有不同单一溶剂的电解液进行线性扫描伏安曲线测试,鉴定不同溶剂的还原分解行为,指出溶剂在决定SEI组成和性质上的重要作用,为后文通过调节SEI电子通路来实现高效接触预锂化提供理论基础.为了获得实际循环中复合负极的过电位演变规律,Shi等[87 ] 组装三电极全电池实时监测随循环变化的负极极化曲线,提出连续转换-去插层的脱锂机理(conversion-deintercalation,CTD),即在初始循环仅有锂溶出的转换反应发生,直到复合负极的过电位达到锂化石墨的脱锂电位时,更为可逆的去插层反应将代替锂脱出反应,进而减少非活性锂的产生并抑制电池极化的快速增长(图3 ).结合恒流间歇滴定技术,Cai等[88 ] 比较了包覆石墨和未修饰石墨电极的电压滞后和欧姆极化,并根据Fick定律计算出各自的锂离子扩散系数.比较结果表明,通过包覆修饰,石墨负极拥有了更多的活性位点和离子扩散路径,大大提升了锂离子电池的倍率性能. ...
1
... 作为一种电极动力学的无损诊断方法,EIS可以区分具有不同特征频率的电极过程.借助参比电极,原本两电极的耦合频率响应(一种凹陷的半椭圆——特征频率重叠导致特征半圆交叠[7 ] )能够很好地被区分,有助于深入理解电池内部的工作/失效机制.Yao等[89 ] 使用三电极设置对石墨负极进行变温EIS测试,通过对各界面过程阻抗进行Arrhenius定律拟合,真实地反映出石墨/电解液界面锂离子的脱溶剂化以及穿过SEI的能垒,印证了弱溶剂化体系中溶剂化配位结构-界面化学-电极过程动力学的构效关系,为下一代储能器件的电解液设计提供了不同的见解.快充、低温锂离子电池是当前主要的开发需求,但析锂问题一直困扰着研究学者和工业界[90 ] .析锂不仅会导致电池容量损失,枝晶状的锂沉积还容易引发电池短路[91 ] ,极大地威胁电池的安全运行[92 ] .在众多无损析锂检测技术中,基于电化学信号的诊断方法是最具实用性和可行性的.Xu等[93 ] 采用三电极电池构型对石墨负极进行暂态和阻抗分析,发现iR 降与负极的电荷转移阻抗变化趋势一致而不受欧姆和SEI阻抗的影响.由于析锂相当于在原始嵌锂反应上并联一个锂沉积过程,会导致石墨整体电荷转移阻抗降低,于是便可通过检测iR 降中R 的变化来指认析锂的发生.另外,基于析锂会增大石墨负极的电化学活性表面积(ECSA),而ECSA又与双电层电容紧密相关,借助参比电极检测石墨负极EIS虚部变化以获得电极容抗行为可以用于指示析锂的起始点[图4 (a)].更进一步,Xu等[94 ] 利用三电极设置解耦出正负极各自电极过程的响应频率范围,从而选择合适的特征频率进行单频动态电化学阻抗谱(DEIS)测试,避开了正极干扰,将该方法——动态电容检测技术扩展到实际两电极体系中,可便捷地对常规电池进行在线安全预警.最近,Xu等[95 ] 还提出了基于弛豫时间检测的原位析锂诊断技术.当析锂发生时,耦合了锂沉积和原有锂插层的整体反应被加快,导致电荷转移过程的弛豫时间降低,借助三电极快速弛豫方法对石墨负极相应的电荷转移过程进行拟合,便可获得充电过程中石墨表面反应弛豫时间的演变规律,以此建立析锂的安全边界条件,促进了快充协议的开发. ...
1
... 作为一种电极动力学的无损诊断方法,EIS可以区分具有不同特征频率的电极过程.借助参比电极,原本两电极的耦合频率响应(一种凹陷的半椭圆——特征频率重叠导致特征半圆交叠[7 ] )能够很好地被区分,有助于深入理解电池内部的工作/失效机制.Yao等[89 ] 使用三电极设置对石墨负极进行变温EIS测试,通过对各界面过程阻抗进行Arrhenius定律拟合,真实地反映出石墨/电解液界面锂离子的脱溶剂化以及穿过SEI的能垒,印证了弱溶剂化体系中溶剂化配位结构-界面化学-电极过程动力学的构效关系,为下一代储能器件的电解液设计提供了不同的见解.快充、低温锂离子电池是当前主要的开发需求,但析锂问题一直困扰着研究学者和工业界[90 ] .析锂不仅会导致电池容量损失,枝晶状的锂沉积还容易引发电池短路[91 ] ,极大地威胁电池的安全运行[92 ] .在众多无损析锂检测技术中,基于电化学信号的诊断方法是最具实用性和可行性的.Xu等[93 ] 采用三电极电池构型对石墨负极进行暂态和阻抗分析,发现iR 降与负极的电荷转移阻抗变化趋势一致而不受欧姆和SEI阻抗的影响.由于析锂相当于在原始嵌锂反应上并联一个锂沉积过程,会导致石墨整体电荷转移阻抗降低,于是便可通过检测iR 降中R 的变化来指认析锂的发生.另外,基于析锂会增大石墨负极的电化学活性表面积(ECSA),而ECSA又与双电层电容紧密相关,借助参比电极检测石墨负极EIS虚部变化以获得电极容抗行为可以用于指示析锂的起始点[图4 (a)].更进一步,Xu等[94 ] 利用三电极设置解耦出正负极各自电极过程的响应频率范围,从而选择合适的特征频率进行单频动态电化学阻抗谱(DEIS)测试,避开了正极干扰,将该方法——动态电容检测技术扩展到实际两电极体系中,可便捷地对常规电池进行在线安全预警.最近,Xu等[95 ] 还提出了基于弛豫时间检测的原位析锂诊断技术.当析锂发生时,耦合了锂沉积和原有锂插层的整体反应被加快,导致电荷转移过程的弛豫时间降低,借助三电极快速弛豫方法对石墨负极相应的电荷转移过程进行拟合,便可获得充电过程中石墨表面反应弛豫时间的演变规律,以此建立析锂的安全边界条件,促进了快充协议的开发. ...
1
... 作为一种电极动力学的无损诊断方法,EIS可以区分具有不同特征频率的电极过程.借助参比电极,原本两电极的耦合频率响应(一种凹陷的半椭圆——特征频率重叠导致特征半圆交叠[7 ] )能够很好地被区分,有助于深入理解电池内部的工作/失效机制.Yao等[89 ] 使用三电极设置对石墨负极进行变温EIS测试,通过对各界面过程阻抗进行Arrhenius定律拟合,真实地反映出石墨/电解液界面锂离子的脱溶剂化以及穿过SEI的能垒,印证了弱溶剂化体系中溶剂化配位结构-界面化学-电极过程动力学的构效关系,为下一代储能器件的电解液设计提供了不同的见解.快充、低温锂离子电池是当前主要的开发需求,但析锂问题一直困扰着研究学者和工业界[90 ] .析锂不仅会导致电池容量损失,枝晶状的锂沉积还容易引发电池短路[91 ] ,极大地威胁电池的安全运行[92 ] .在众多无损析锂检测技术中,基于电化学信号的诊断方法是最具实用性和可行性的.Xu等[93 ] 采用三电极电池构型对石墨负极进行暂态和阻抗分析,发现iR 降与负极的电荷转移阻抗变化趋势一致而不受欧姆和SEI阻抗的影响.由于析锂相当于在原始嵌锂反应上并联一个锂沉积过程,会导致石墨整体电荷转移阻抗降低,于是便可通过检测iR 降中R 的变化来指认析锂的发生.另外,基于析锂会增大石墨负极的电化学活性表面积(ECSA),而ECSA又与双电层电容紧密相关,借助参比电极检测石墨负极EIS虚部变化以获得电极容抗行为可以用于指示析锂的起始点[图4 (a)].更进一步,Xu等[94 ] 利用三电极设置解耦出正负极各自电极过程的响应频率范围,从而选择合适的特征频率进行单频动态电化学阻抗谱(DEIS)测试,避开了正极干扰,将该方法——动态电容检测技术扩展到实际两电极体系中,可便捷地对常规电池进行在线安全预警.最近,Xu等[95 ] 还提出了基于弛豫时间检测的原位析锂诊断技术.当析锂发生时,耦合了锂沉积和原有锂插层的整体反应被加快,导致电荷转移过程的弛豫时间降低,借助三电极快速弛豫方法对石墨负极相应的电荷转移过程进行拟合,便可获得充电过程中石墨表面反应弛豫时间的演变规律,以此建立析锂的安全边界条件,促进了快充协议的开发. ...
1
... 作为一种电极动力学的无损诊断方法,EIS可以区分具有不同特征频率的电极过程.借助参比电极,原本两电极的耦合频率响应(一种凹陷的半椭圆——特征频率重叠导致特征半圆交叠[7 ] )能够很好地被区分,有助于深入理解电池内部的工作/失效机制.Yao等[89 ] 使用三电极设置对石墨负极进行变温EIS测试,通过对各界面过程阻抗进行Arrhenius定律拟合,真实地反映出石墨/电解液界面锂离子的脱溶剂化以及穿过SEI的能垒,印证了弱溶剂化体系中溶剂化配位结构-界面化学-电极过程动力学的构效关系,为下一代储能器件的电解液设计提供了不同的见解.快充、低温锂离子电池是当前主要的开发需求,但析锂问题一直困扰着研究学者和工业界[90 ] .析锂不仅会导致电池容量损失,枝晶状的锂沉积还容易引发电池短路[91 ] ,极大地威胁电池的安全运行[92 ] .在众多无损析锂检测技术中,基于电化学信号的诊断方法是最具实用性和可行性的.Xu等[93 ] 采用三电极电池构型对石墨负极进行暂态和阻抗分析,发现iR 降与负极的电荷转移阻抗变化趋势一致而不受欧姆和SEI阻抗的影响.由于析锂相当于在原始嵌锂反应上并联一个锂沉积过程,会导致石墨整体电荷转移阻抗降低,于是便可通过检测iR 降中R 的变化来指认析锂的发生.另外,基于析锂会增大石墨负极的电化学活性表面积(ECSA),而ECSA又与双电层电容紧密相关,借助参比电极检测石墨负极EIS虚部变化以获得电极容抗行为可以用于指示析锂的起始点[图4 (a)].更进一步,Xu等[94 ] 利用三电极设置解耦出正负极各自电极过程的响应频率范围,从而选择合适的特征频率进行单频动态电化学阻抗谱(DEIS)测试,避开了正极干扰,将该方法——动态电容检测技术扩展到实际两电极体系中,可便捷地对常规电池进行在线安全预警.最近,Xu等[95 ] 还提出了基于弛豫时间检测的原位析锂诊断技术.当析锂发生时,耦合了锂沉积和原有锂插层的整体反应被加快,导致电荷转移过程的弛豫时间降低,借助三电极快速弛豫方法对石墨负极相应的电荷转移过程进行拟合,便可获得充电过程中石墨表面反应弛豫时间的演变规律,以此建立析锂的安全边界条件,促进了快充协议的开发. ...
1
... 作为一种电极动力学的无损诊断方法,EIS可以区分具有不同特征频率的电极过程.借助参比电极,原本两电极的耦合频率响应(一种凹陷的半椭圆——特征频率重叠导致特征半圆交叠[7 ] )能够很好地被区分,有助于深入理解电池内部的工作/失效机制.Yao等[89 ] 使用三电极设置对石墨负极进行变温EIS测试,通过对各界面过程阻抗进行Arrhenius定律拟合,真实地反映出石墨/电解液界面锂离子的脱溶剂化以及穿过SEI的能垒,印证了弱溶剂化体系中溶剂化配位结构-界面化学-电极过程动力学的构效关系,为下一代储能器件的电解液设计提供了不同的见解.快充、低温锂离子电池是当前主要的开发需求,但析锂问题一直困扰着研究学者和工业界[90 ] .析锂不仅会导致电池容量损失,枝晶状的锂沉积还容易引发电池短路[91 ] ,极大地威胁电池的安全运行[92 ] .在众多无损析锂检测技术中,基于电化学信号的诊断方法是最具实用性和可行性的.Xu等[93 ] 采用三电极电池构型对石墨负极进行暂态和阻抗分析,发现iR 降与负极的电荷转移阻抗变化趋势一致而不受欧姆和SEI阻抗的影响.由于析锂相当于在原始嵌锂反应上并联一个锂沉积过程,会导致石墨整体电荷转移阻抗降低,于是便可通过检测iR 降中R 的变化来指认析锂的发生.另外,基于析锂会增大石墨负极的电化学活性表面积(ECSA),而ECSA又与双电层电容紧密相关,借助参比电极检测石墨负极EIS虚部变化以获得电极容抗行为可以用于指示析锂的起始点[图4 (a)].更进一步,Xu等[94 ] 利用三电极设置解耦出正负极各自电极过程的响应频率范围,从而选择合适的特征频率进行单频动态电化学阻抗谱(DEIS)测试,避开了正极干扰,将该方法——动态电容检测技术扩展到实际两电极体系中,可便捷地对常规电池进行在线安全预警.最近,Xu等[95 ] 还提出了基于弛豫时间检测的原位析锂诊断技术.当析锂发生时,耦合了锂沉积和原有锂插层的整体反应被加快,导致电荷转移过程的弛豫时间降低,借助三电极快速弛豫方法对石墨负极相应的电荷转移过程进行拟合,便可获得充电过程中石墨表面反应弛豫时间的演变规律,以此建立析锂的安全边界条件,促进了快充协议的开发. ...
1
... 作为一种电极动力学的无损诊断方法,EIS可以区分具有不同特征频率的电极过程.借助参比电极,原本两电极的耦合频率响应(一种凹陷的半椭圆——特征频率重叠导致特征半圆交叠[7 ] )能够很好地被区分,有助于深入理解电池内部的工作/失效机制.Yao等[89 ] 使用三电极设置对石墨负极进行变温EIS测试,通过对各界面过程阻抗进行Arrhenius定律拟合,真实地反映出石墨/电解液界面锂离子的脱溶剂化以及穿过SEI的能垒,印证了弱溶剂化体系中溶剂化配位结构-界面化学-电极过程动力学的构效关系,为下一代储能器件的电解液设计提供了不同的见解.快充、低温锂离子电池是当前主要的开发需求,但析锂问题一直困扰着研究学者和工业界[90 ] .析锂不仅会导致电池容量损失,枝晶状的锂沉积还容易引发电池短路[91 ] ,极大地威胁电池的安全运行[92 ] .在众多无损析锂检测技术中,基于电化学信号的诊断方法是最具实用性和可行性的.Xu等[93 ] 采用三电极电池构型对石墨负极进行暂态和阻抗分析,发现iR 降与负极的电荷转移阻抗变化趋势一致而不受欧姆和SEI阻抗的影响.由于析锂相当于在原始嵌锂反应上并联一个锂沉积过程,会导致石墨整体电荷转移阻抗降低,于是便可通过检测iR 降中R 的变化来指认析锂的发生.另外,基于析锂会增大石墨负极的电化学活性表面积(ECSA),而ECSA又与双电层电容紧密相关,借助参比电极检测石墨负极EIS虚部变化以获得电极容抗行为可以用于指示析锂的起始点[图4 (a)].更进一步,Xu等[94 ] 利用三电极设置解耦出正负极各自电极过程的响应频率范围,从而选择合适的特征频率进行单频动态电化学阻抗谱(DEIS)测试,避开了正极干扰,将该方法——动态电容检测技术扩展到实际两电极体系中,可便捷地对常规电池进行在线安全预警.最近,Xu等[95 ] 还提出了基于弛豫时间检测的原位析锂诊断技术.当析锂发生时,耦合了锂沉积和原有锂插层的整体反应被加快,导致电荷转移过程的弛豫时间降低,借助三电极快速弛豫方法对石墨负极相应的电荷转移过程进行拟合,便可获得充电过程中石墨表面反应弛豫时间的演变规律,以此建立析锂的安全边界条件,促进了快充协议的开发. ...
3
... 作为一种电极动力学的无损诊断方法,EIS可以区分具有不同特征频率的电极过程.借助参比电极,原本两电极的耦合频率响应(一种凹陷的半椭圆——特征频率重叠导致特征半圆交叠[7 ] )能够很好地被区分,有助于深入理解电池内部的工作/失效机制.Yao等[89 ] 使用三电极设置对石墨负极进行变温EIS测试,通过对各界面过程阻抗进行Arrhenius定律拟合,真实地反映出石墨/电解液界面锂离子的脱溶剂化以及穿过SEI的能垒,印证了弱溶剂化体系中溶剂化配位结构-界面化学-电极过程动力学的构效关系,为下一代储能器件的电解液设计提供了不同的见解.快充、低温锂离子电池是当前主要的开发需求,但析锂问题一直困扰着研究学者和工业界[90 ] .析锂不仅会导致电池容量损失,枝晶状的锂沉积还容易引发电池短路[91 ] ,极大地威胁电池的安全运行[92 ] .在众多无损析锂检测技术中,基于电化学信号的诊断方法是最具实用性和可行性的.Xu等[93 ] 采用三电极电池构型对石墨负极进行暂态和阻抗分析,发现iR 降与负极的电荷转移阻抗变化趋势一致而不受欧姆和SEI阻抗的影响.由于析锂相当于在原始嵌锂反应上并联一个锂沉积过程,会导致石墨整体电荷转移阻抗降低,于是便可通过检测iR 降中R 的变化来指认析锂的发生.另外,基于析锂会增大石墨负极的电化学活性表面积(ECSA),而ECSA又与双电层电容紧密相关,借助参比电极检测石墨负极EIS虚部变化以获得电极容抗行为可以用于指示析锂的起始点[图4 (a)].更进一步,Xu等[94 ] 利用三电极设置解耦出正负极各自电极过程的响应频率范围,从而选择合适的特征频率进行单频动态电化学阻抗谱(DEIS)测试,避开了正极干扰,将该方法——动态电容检测技术扩展到实际两电极体系中,可便捷地对常规电池进行在线安全预警.最近,Xu等[95 ] 还提出了基于弛豫时间检测的原位析锂诊断技术.当析锂发生时,耦合了锂沉积和原有锂插层的整体反应被加快,导致电荷转移过程的弛豫时间降低,借助三电极快速弛豫方法对石墨负极相应的电荷转移过程进行拟合,便可获得充电过程中石墨表面反应弛豫时间的演变规律,以此建立析锂的安全边界条件,促进了快充协议的开发. ...
... [
94 ];
(b) 使用三电极暂态弛豫方法解耦锂沉积极化结果
[96 ] (a) Static and dynamic capacitance tests of the three-electrode half cell[94 ] ; (b) Deconvolved polarization results of Li plating using the three-electrode transient relaxation method[96 ] Fig. 4 ![]()
作为一种有力的解耦工具,参比电极可以指认电极过程中的速度控制步骤,为快充、低温锂电池的构建提供建设性的指导.利用三电极电池的DEIS技术,Yao等[97 ] 分别鉴定了电池工作状态下正负极的动力学行为,指出界面传荷过程是快充的速度控制步骤,并且两极界面的电荷转移动力学应当匹配,单独正极或负极传荷占优会导致电池析锂或快充能力受损,只有共同降低两者的电荷转移能垒才能促进超快充技术的落地.针对锂金属电池低温运行容量快速衰减问题,Jin等[98 ] 借助三电极电池对三种电解液中正负极各个界面的过程阻抗进行比较分析,结果表明不论是在室温还是-40 ℃的低温下,脱溶剂化阻抗在电池总阻抗中都是占主导的,极大地支配了电池的低温性能.然而,在电池动态循环中电极界面锂离子浓度会发生显著变化,导致低温下金属锂负极动力学速度控制步骤的改变.该变化已被Xu等[96 ] 应用三电极暂态弛豫检测方法报道,结果显示在-20 ℃低温下浓差极化贡献了锂沉积过程的主要极化过电位[图4 (b)].作者基于上述结果进一步强调了体相电解液传导、离子浓度梯度影响下的溶剂化结构以及形成的界面化学对于低温锂金属电池运行的重要作用,为金属锂电池设计低温、快充电解液提供了新的思路. ...
... [
94 ]; (b) Deconvolved polarization results of Li plating using the three-electrode transient relaxation method
[96 ] Fig. 4 ![]()
作为一种有力的解耦工具,参比电极可以指认电极过程中的速度控制步骤,为快充、低温锂电池的构建提供建设性的指导.利用三电极电池的DEIS技术,Yao等[97 ] 分别鉴定了电池工作状态下正负极的动力学行为,指出界面传荷过程是快充的速度控制步骤,并且两极界面的电荷转移动力学应当匹配,单独正极或负极传荷占优会导致电池析锂或快充能力受损,只有共同降低两者的电荷转移能垒才能促进超快充技术的落地.针对锂金属电池低温运行容量快速衰减问题,Jin等[98 ] 借助三电极电池对三种电解液中正负极各个界面的过程阻抗进行比较分析,结果表明不论是在室温还是-40 ℃的低温下,脱溶剂化阻抗在电池总阻抗中都是占主导的,极大地支配了电池的低温性能.然而,在电池动态循环中电极界面锂离子浓度会发生显著变化,导致低温下金属锂负极动力学速度控制步骤的改变.该变化已被Xu等[96 ] 应用三电极暂态弛豫检测方法报道,结果显示在-20 ℃低温下浓差极化贡献了锂沉积过程的主要极化过电位[图4 (b)].作者基于上述结果进一步强调了体相电解液传导、离子浓度梯度影响下的溶剂化结构以及形成的界面化学对于低温锂金属电池运行的重要作用,为金属锂电池设计低温、快充电解液提供了新的思路. ...
1
... 作为一种电极动力学的无损诊断方法,EIS可以区分具有不同特征频率的电极过程.借助参比电极,原本两电极的耦合频率响应(一种凹陷的半椭圆——特征频率重叠导致特征半圆交叠[7 ] )能够很好地被区分,有助于深入理解电池内部的工作/失效机制.Yao等[89 ] 使用三电极设置对石墨负极进行变温EIS测试,通过对各界面过程阻抗进行Arrhenius定律拟合,真实地反映出石墨/电解液界面锂离子的脱溶剂化以及穿过SEI的能垒,印证了弱溶剂化体系中溶剂化配位结构-界面化学-电极过程动力学的构效关系,为下一代储能器件的电解液设计提供了不同的见解.快充、低温锂离子电池是当前主要的开发需求,但析锂问题一直困扰着研究学者和工业界[90 ] .析锂不仅会导致电池容量损失,枝晶状的锂沉积还容易引发电池短路[91 ] ,极大地威胁电池的安全运行[92 ] .在众多无损析锂检测技术中,基于电化学信号的诊断方法是最具实用性和可行性的.Xu等[93 ] 采用三电极电池构型对石墨负极进行暂态和阻抗分析,发现iR 降与负极的电荷转移阻抗变化趋势一致而不受欧姆和SEI阻抗的影响.由于析锂相当于在原始嵌锂反应上并联一个锂沉积过程,会导致石墨整体电荷转移阻抗降低,于是便可通过检测iR 降中R 的变化来指认析锂的发生.另外,基于析锂会增大石墨负极的电化学活性表面积(ECSA),而ECSA又与双电层电容紧密相关,借助参比电极检测石墨负极EIS虚部变化以获得电极容抗行为可以用于指示析锂的起始点[图4 (a)].更进一步,Xu等[94 ] 利用三电极设置解耦出正负极各自电极过程的响应频率范围,从而选择合适的特征频率进行单频动态电化学阻抗谱(DEIS)测试,避开了正极干扰,将该方法——动态电容检测技术扩展到实际两电极体系中,可便捷地对常规电池进行在线安全预警.最近,Xu等[95 ] 还提出了基于弛豫时间检测的原位析锂诊断技术.当析锂发生时,耦合了锂沉积和原有锂插层的整体反应被加快,导致电荷转移过程的弛豫时间降低,借助三电极快速弛豫方法对石墨负极相应的电荷转移过程进行拟合,便可获得充电过程中石墨表面反应弛豫时间的演变规律,以此建立析锂的安全边界条件,促进了快充协议的开发. ...
3
... 作为一种电极动力学的无损诊断方法,EIS可以区分具有不同特征频率的电极过程.借助参比电极,原本两电极的耦合频率响应(一种凹陷的半椭圆——特征频率重叠导致特征半圆交叠
[7 ] )能够很好地被区分,有助于深入理解电池内部的工作/失效机制.Yao等
[89 ] 使用三电极设置对石墨负极进行变温EIS测试,通过对各界面过程阻抗进行Arrhenius定律拟合,真实地反映出石墨/电解液界面锂离子的脱溶剂化以及穿过SEI的能垒,印证了弱溶剂化体系中溶剂化配位结构-界面化学-电极过程动力学的构效关系,为下一代储能器件的电解液设计提供了不同的见解.快充、低温锂离子电池是当前主要的开发需求,但析锂问题一直困扰着研究学者和工业界
[90 ] .析锂不仅会导致电池容量损失,枝晶状的锂沉积还容易引发电池短路
[91 ] ,极大地威胁电池的安全运行
[92 ] .在众多无损析锂检测技术中,基于电化学信号的诊断方法是最具实用性和可行性的.Xu等
[93 ] 采用三电极电池构型对石墨负极进行暂态和阻抗分析,发现
iR 降与负极的电荷转移阻抗变化趋势一致而不受欧姆和SEI阻抗的影响.由于析锂相当于在原始嵌锂反应上并联一个锂沉积过程,会导致石墨整体电荷转移阻抗降低,于是便可通过检测
iR 降中
R 的变化来指认析锂的发生.另外,基于析锂会增大石墨负极的电化学活性表面积(ECSA),而ECSA又与双电层电容紧密相关,借助参比电极检测石墨负极EIS虚部变化以获得电极容抗行为可以用于指示析锂的起始点[
图4 (a)].更进一步,Xu等
[94 ] 利用三电极设置解耦出正负极各自电极过程的响应频率范围,从而选择合适的特征频率进行单频动态电化学阻抗谱(DEIS)测试,避开了正极干扰,将该方法——动态电容检测技术扩展到实际两电极体系中,可便捷地对常规电池进行在线安全预警.最近,Xu等
[95 ] 还提出了基于弛豫时间检测的原位析锂诊断技术.当析锂发生时,耦合了锂沉积和原有锂插层的整体反应被加快,导致电荷转移过程的弛豫时间降低,借助三电极快速弛豫方法对石墨负极相应的电荷转移过程进行拟合,便可获得充电过程中石墨表面反应弛豫时间的演变规律,以此建立析锂的安全边界条件,促进了快充协议的开发.
图4 (a) 三电极石墨半电池的静态和动态电容测试[94 ] ;(b) 使用三电极暂态弛豫方法解耦锂沉积极化结果[96 ] (a) Static and dynamic capacitance tests of the three-electrode half cell[94 ] ; (b) Deconvolved polarization results of Li plating using the three-electrode transient relaxation method[96 ] Fig. 4 ![]()
作为一种有力的解耦工具,参比电极可以指认电极过程中的速度控制步骤,为快充、低温锂电池的构建提供建设性的指导.利用三电极电池的DEIS技术,Yao等[97 ] 分别鉴定了电池工作状态下正负极的动力学行为,指出界面传荷过程是快充的速度控制步骤,并且两极界面的电荷转移动力学应当匹配,单独正极或负极传荷占优会导致电池析锂或快充能力受损,只有共同降低两者的电荷转移能垒才能促进超快充技术的落地.针对锂金属电池低温运行容量快速衰减问题,Jin等[98 ] 借助三电极电池对三种电解液中正负极各个界面的过程阻抗进行比较分析,结果表明不论是在室温还是-40 ℃的低温下,脱溶剂化阻抗在电池总阻抗中都是占主导的,极大地支配了电池的低温性能.然而,在电池动态循环中电极界面锂离子浓度会发生显著变化,导致低温下金属锂负极动力学速度控制步骤的改变.该变化已被Xu等[96 ] 应用三电极暂态弛豫检测方法报道,结果显示在-20 ℃低温下浓差极化贡献了锂沉积过程的主要极化过电位[图4 (b)].作者基于上述结果进一步强调了体相电解液传导、离子浓度梯度影响下的溶剂化结构以及形成的界面化学对于低温锂金属电池运行的重要作用,为金属锂电池设计低温、快充电解液提供了新的思路. ...
... [
96 ]
Fig. 4 ![]()
作为一种有力的解耦工具,参比电极可以指认电极过程中的速度控制步骤,为快充、低温锂电池的构建提供建设性的指导.利用三电极电池的DEIS技术,Yao等[97 ] 分别鉴定了电池工作状态下正负极的动力学行为,指出界面传荷过程是快充的速度控制步骤,并且两极界面的电荷转移动力学应当匹配,单独正极或负极传荷占优会导致电池析锂或快充能力受损,只有共同降低两者的电荷转移能垒才能促进超快充技术的落地.针对锂金属电池低温运行容量快速衰减问题,Jin等[98 ] 借助三电极电池对三种电解液中正负极各个界面的过程阻抗进行比较分析,结果表明不论是在室温还是-40 ℃的低温下,脱溶剂化阻抗在电池总阻抗中都是占主导的,极大地支配了电池的低温性能.然而,在电池动态循环中电极界面锂离子浓度会发生显著变化,导致低温下金属锂负极动力学速度控制步骤的改变.该变化已被Xu等[96 ] 应用三电极暂态弛豫检测方法报道,结果显示在-20 ℃低温下浓差极化贡献了锂沉积过程的主要极化过电位[图4 (b)].作者基于上述结果进一步强调了体相电解液传导、离子浓度梯度影响下的溶剂化结构以及形成的界面化学对于低温锂金属电池运行的重要作用,为金属锂电池设计低温、快充电解液提供了新的思路. ...
... 作为一种有力的解耦工具,参比电极可以指认电极过程中的速度控制步骤,为快充、低温锂电池的构建提供建设性的指导.利用三电极电池的DEIS技术,Yao等[97 ] 分别鉴定了电池工作状态下正负极的动力学行为,指出界面传荷过程是快充的速度控制步骤,并且两极界面的电荷转移动力学应当匹配,单独正极或负极传荷占优会导致电池析锂或快充能力受损,只有共同降低两者的电荷转移能垒才能促进超快充技术的落地.针对锂金属电池低温运行容量快速衰减问题,Jin等[98 ] 借助三电极电池对三种电解液中正负极各个界面的过程阻抗进行比较分析,结果表明不论是在室温还是-40 ℃的低温下,脱溶剂化阻抗在电池总阻抗中都是占主导的,极大地支配了电池的低温性能.然而,在电池动态循环中电极界面锂离子浓度会发生显著变化,导致低温下金属锂负极动力学速度控制步骤的改变.该变化已被Xu等[96 ] 应用三电极暂态弛豫检测方法报道,结果显示在-20 ℃低温下浓差极化贡献了锂沉积过程的主要极化过电位[图4 (b)].作者基于上述结果进一步强调了体相电解液传导、离子浓度梯度影响下的溶剂化结构以及形成的界面化学对于低温锂金属电池运行的重要作用,为金属锂电池设计低温、快充电解液提供了新的思路. ...
1
... 作为一种有力的解耦工具,参比电极可以指认电极过程中的速度控制步骤,为快充、低温锂电池的构建提供建设性的指导.利用三电极电池的DEIS技术,Yao等[97 ] 分别鉴定了电池工作状态下正负极的动力学行为,指出界面传荷过程是快充的速度控制步骤,并且两极界面的电荷转移动力学应当匹配,单独正极或负极传荷占优会导致电池析锂或快充能力受损,只有共同降低两者的电荷转移能垒才能促进超快充技术的落地.针对锂金属电池低温运行容量快速衰减问题,Jin等[98 ] 借助三电极电池对三种电解液中正负极各个界面的过程阻抗进行比较分析,结果表明不论是在室温还是-40 ℃的低温下,脱溶剂化阻抗在电池总阻抗中都是占主导的,极大地支配了电池的低温性能.然而,在电池动态循环中电极界面锂离子浓度会发生显著变化,导致低温下金属锂负极动力学速度控制步骤的改变.该变化已被Xu等[96 ] 应用三电极暂态弛豫检测方法报道,结果显示在-20 ℃低温下浓差极化贡献了锂沉积过程的主要极化过电位[图4 (b)].作者基于上述结果进一步强调了体相电解液传导、离子浓度梯度影响下的溶剂化结构以及形成的界面化学对于低温锂金属电池运行的重要作用,为金属锂电池设计低温、快充电解液提供了新的思路. ...
1
... 作为一种有力的解耦工具,参比电极可以指认电极过程中的速度控制步骤,为快充、低温锂电池的构建提供建设性的指导.利用三电极电池的DEIS技术,Yao等[97 ] 分别鉴定了电池工作状态下正负极的动力学行为,指出界面传荷过程是快充的速度控制步骤,并且两极界面的电荷转移动力学应当匹配,单独正极或负极传荷占优会导致电池析锂或快充能力受损,只有共同降低两者的电荷转移能垒才能促进超快充技术的落地.针对锂金属电池低温运行容量快速衰减问题,Jin等[98 ] 借助三电极电池对三种电解液中正负极各个界面的过程阻抗进行比较分析,结果表明不论是在室温还是-40 ℃的低温下,脱溶剂化阻抗在电池总阻抗中都是占主导的,极大地支配了电池的低温性能.然而,在电池动态循环中电极界面锂离子浓度会发生显著变化,导致低温下金属锂负极动力学速度控制步骤的改变.该变化已被Xu等[96 ] 应用三电极暂态弛豫检测方法报道,结果显示在-20 ℃低温下浓差极化贡献了锂沉积过程的主要极化过电位[图4 (b)].作者基于上述结果进一步强调了体相电解液传导、离子浓度梯度影响下的溶剂化结构以及形成的界面化学对于低温锂金属电池运行的重要作用,为金属锂电池设计低温、快充电解液提供了新的思路. ...
1
... 目前可供选择的参比电极活性材料还十分有限,可利用的材料现阶段也存在稳定性差、寿命短、加工复杂等弊端,亟需投入更多努力开发可靠的新型参比电极材料[99 ] ;锂电池往往具有较高的体积和质量能量密度指标,为了与这样紧密配置的电池构型兼容,并减少参比电极对离子传输的干扰,微型化是参比电极实用化的必经之路,在这方面可利用激光加工、3D打印等先进制造技术[100 -101 ] ;制备工艺方面应全盘考虑,对锂化参数、时间和环境等严格限制,特别注意对集流体和活性材料的界面保护,防止原电池腐蚀以及再分布问题等的隐性损害,尽可能改善参比电极质量,减少活性材料的损耗,提高其电位和结构稳定性;参比电极也需要结合仿真模拟、数字孪生等手段进行合理设计和设置[102 ] ,以确保运行中电解液环境的基本稳定,不会显著影响参比电极的电位准确性以及电池的正常循环.此外,参比电极的应用不仅限于上述三个方面,还可结合大数据和人工智能建立预测模型,对电池荷电状态、日历/循环老化寿命等进行评估,辅助电池管理系统的运行.可以预见未来电池中插入的不仅仅是参比电极,而是电位、压力、温度、气体等众多传感器的集成阵列,电池的安全性和智能化水平也会达到新的高度.相信在行业的不断推动下参比电极会持续地发挥价值,进一步促进对电池领域的理解和突破. ...
1
... 目前可供选择的参比电极活性材料还十分有限,可利用的材料现阶段也存在稳定性差、寿命短、加工复杂等弊端,亟需投入更多努力开发可靠的新型参比电极材料[99 ] ;锂电池往往具有较高的体积和质量能量密度指标,为了与这样紧密配置的电池构型兼容,并减少参比电极对离子传输的干扰,微型化是参比电极实用化的必经之路,在这方面可利用激光加工、3D打印等先进制造技术[100 -101 ] ;制备工艺方面应全盘考虑,对锂化参数、时间和环境等严格限制,特别注意对集流体和活性材料的界面保护,防止原电池腐蚀以及再分布问题等的隐性损害,尽可能改善参比电极质量,减少活性材料的损耗,提高其电位和结构稳定性;参比电极也需要结合仿真模拟、数字孪生等手段进行合理设计和设置[102 ] ,以确保运行中电解液环境的基本稳定,不会显著影响参比电极的电位准确性以及电池的正常循环.此外,参比电极的应用不仅限于上述三个方面,还可结合大数据和人工智能建立预测模型,对电池荷电状态、日历/循环老化寿命等进行评估,辅助电池管理系统的运行.可以预见未来电池中插入的不仅仅是参比电极,而是电位、压力、温度、气体等众多传感器的集成阵列,电池的安全性和智能化水平也会达到新的高度.相信在行业的不断推动下参比电极会持续地发挥价值,进一步促进对电池领域的理解和突破. ...
1
... 目前可供选择的参比电极活性材料还十分有限,可利用的材料现阶段也存在稳定性差、寿命短、加工复杂等弊端,亟需投入更多努力开发可靠的新型参比电极材料[99 ] ;锂电池往往具有较高的体积和质量能量密度指标,为了与这样紧密配置的电池构型兼容,并减少参比电极对离子传输的干扰,微型化是参比电极实用化的必经之路,在这方面可利用激光加工、3D打印等先进制造技术[100 -101 ] ;制备工艺方面应全盘考虑,对锂化参数、时间和环境等严格限制,特别注意对集流体和活性材料的界面保护,防止原电池腐蚀以及再分布问题等的隐性损害,尽可能改善参比电极质量,减少活性材料的损耗,提高其电位和结构稳定性;参比电极也需要结合仿真模拟、数字孪生等手段进行合理设计和设置[102 ] ,以确保运行中电解液环境的基本稳定,不会显著影响参比电极的电位准确性以及电池的正常循环.此外,参比电极的应用不仅限于上述三个方面,还可结合大数据和人工智能建立预测模型,对电池荷电状态、日历/循环老化寿命等进行评估,辅助电池管理系统的运行.可以预见未来电池中插入的不仅仅是参比电极,而是电位、压力、温度、气体等众多传感器的集成阵列,电池的安全性和智能化水平也会达到新的高度.相信在行业的不断推动下参比电极会持续地发挥价值,进一步促进对电池领域的理解和突破. ...
1
... 目前可供选择的参比电极活性材料还十分有限,可利用的材料现阶段也存在稳定性差、寿命短、加工复杂等弊端,亟需投入更多努力开发可靠的新型参比电极材料[99 ] ;锂电池往往具有较高的体积和质量能量密度指标,为了与这样紧密配置的电池构型兼容,并减少参比电极对离子传输的干扰,微型化是参比电极实用化的必经之路,在这方面可利用激光加工、3D打印等先进制造技术[100 -101 ] ;制备工艺方面应全盘考虑,对锂化参数、时间和环境等严格限制,特别注意对集流体和活性材料的界面保护,防止原电池腐蚀以及再分布问题等的隐性损害,尽可能改善参比电极质量,减少活性材料的损耗,提高其电位和结构稳定性;参比电极也需要结合仿真模拟、数字孪生等手段进行合理设计和设置[102 ] ,以确保运行中电解液环境的基本稳定,不会显著影响参比电极的电位准确性以及电池的正常循环.此外,参比电极的应用不仅限于上述三个方面,还可结合大数据和人工智能建立预测模型,对电池荷电状态、日历/循环老化寿命等进行评估,辅助电池管理系统的运行.可以预见未来电池中插入的不仅仅是参比电极,而是电位、压力、温度、气体等众多传感器的集成阵列,电池的安全性和智能化水平也会达到新的高度.相信在行业的不断推动下参比电极会持续地发挥价值,进一步促进对电池领域的理解和突破. ...