储能科学与技术 ›› 2020, Vol. 9 ›› Issue (2): 361-367.doi: 10.19799/j.cnki.2095-4239.2019.0283

• 庆祝陈立泉院士八十寿辰专刊 • 上一篇    下一篇

低温熔融盐辅助高效回收废旧三元正极材料

范二莎1, 李丽1,2(), 林娇1, 张晓东1, 陈人杰1,2, 吴锋1,2   

  1. 1. 北京理工大学材料学院,北京 100081
    2. 北京电动车辆协同创新中心,北京 100081
  • 收稿日期:2019-12-19 修回日期:2020-01-05 出版日期:2020-03-05 发布日期:2020-03-15
  • 通讯作者: 李丽 E-mail:lily863@bit.edu.cn
  • 作者简介:范二莎(1990—),女,博士研究生,主要研究方向为锂离子电池的回收及资源化再利用,E-mail:454184636@qq.com;
  • 基金资助:
    国家自然科学基金项目(51972030);国家重点研发计划项目(2017YFB0102104)

Low-temperature molten-salt-assisted recycling of spent LiNi1/3Co1/3Mn1/3O2 cathode materials

FAN Ersha1, LI Li1,2(), LIN Jiao1, ZHANG Xiaodong1, CHEN Renjie1,2, WU Feng1,2   

  1. 1. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
    2. Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
  • Received:2019-12-19 Revised:2020-01-05 Online:2020-03-05 Published:2020-03-15
  • Contact: Li LI E-mail:lily863@bit.edu.cn

摘要:

针对退役锂离子电池回收过程中所产生的二次污染及高能耗等问题,提出了一种绿色高效提取废旧镍钴锰酸锂正极材料中有价金属元素的新方法,采用氯化铵作为助熔剂,通过低温煅烧转化与室温水浸复合技术,有效提高了锂离子电池正极材料中有价金属的浸出效率与环境友好性;系统研究了煅烧温度、助熔剂与正极材料质量比、煅烧时间等条件对金属浸出率的影响规律与反应机制。研究结果表明,在煅烧温度350 ℃,助熔剂氯化铵和正极材料质量比为3.5:1,煅烧时间20 min,室温下经水浸后,金属镍、钴、锰和锂的浸出率均在97%以上。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和X射线光电子能谱(XPS)表征煅烧前后材料的晶体结构和表面形貌,深入阐明了煅烧过程中正极材料中金属的相间转化与动力学机理。与传统的湿法冶金和火法冶金回收技术相比,该回收技术具有较为合理的能源强度和更高的工业可操作性。

关键词: 锂离子电池, 绿色回收, 正极材料, 低温煅烧, 水浸

Abstract:

To resolve the secondary pollution and high energy consumption caused by current recycling technology, a green and efficient method for recycling spent LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials is proposed. Using ammonium chloride as the co-solvent, the method effectively leaches the valuable metals in the cathode materials through low-temperature roasting conversion and water-leaching at room temperature. The reaction parameters, namely, the roasting temperature, NH4Cl/NCM mass ratio, and roasting time, were investigated in detail. More than 97% of the Li, Ni, Co, and Mn were recovered under the optimum conditions (roasting temperature is 350 ℃, NH4Cl/NCM mass ratio is 3.5∶1, reaction time is 20 min). During the recycling process, the interphase conversion mechanism of the metal in the cathode material was systematically studied by X-ray diffraction analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. The energy intensity and industrial operability of the proposed recycling technology rivaled those of traditional hydrometallurgical and pyrometallurgical recycling technologies.

Key words: lithium ion battery, environmentally benign recycling, cathode materials, low-temperature roasting, water leaching

中图分类号: