1 |
CHOI J W , AURBACH D . Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1(4): 1-16.
|
2 |
NITTA N , WU F , LEE J T, et al . Li-ion battery materials: present and future[J]. Materials Today, 2015, 18(5): 252-264.
|
3 |
SCROSATI B , HASSOUN J , SUN Y K . Lithium-ion batteries: A look into the future[J]. Energy & Environmental Science, 2011, 4(9): 3287-3295.
|
4 |
WU H , CUI Y . Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429.
|
5 |
ZHAO Y , WEI K , WU H , et al . LiF splitting catalyzed by dual metal nanodomains for an efficient fluoride conversion cathode[J]. ACS Nano, 2019, 13(2): 2490-2500.
|
6 |
WANG L , WU Z , ZOU J , et al . Li-free cathode materials for high energy density lithium batteries[J]. Joule, 2019, 3(9): 2086-2102.
|
7 |
HU J , ZHANG Y , CAO D , et al . Dehydrating bronze iron fluoride as a high capacity conversion cathode for lithium batteries[J]. Journal of Materials Chemistry A, 2016, 4(41): 16166-16174.
|
8 |
LI C , CHEN K , ZHOU X , et al . Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices[J]. NPJ Computational Materials, 2018, 4(1): 22-37.
|
9 |
ZU C X , LI H . Thermodynamic analysis on energy densities of batteries [J]. Energy & Environmental Science, 2011, 4(8): 2614-2624.
|
10 |
CHRISTENSEN C K , RENSEN D R S , HVAM J , et al . Structural evolution of disordered Li x V2O5 bronzes in V2O5 cathodes for Li-ion batteries[J]. Chemistry of Materials, 2018, 31(2): 512-520.
|
11 |
WU C , XIE Y . Promising vanadium oxide and hydroxide nanostructures: from energy storage to energy saving[J]. Energy & Environmental Science, 2010, 3(9): 1191-1206.
|
12 |
COCCIANTELLI J M , DOUMERC J P , POUCHARD M , et al . Crystal chemistry of electrochemically inserted Li x V2O5 [J]. Journal of Power Sources, 1991, 34(2): 103-111.
|
13 |
ASL N M, KIM J H , LEE W C, et al . A new chemical route for the synthesis of β′-Li x V2O5 for use as a high performance cathode[J]. Electrochimica Acta, 2013, 105: 403-411.
|
14 |
LI W D , XU C Y , DU Y , et al . Electrochemical lithium insertion behavior ofβ-Li x V2O5 (0 <x≤ 3) as the cathode material for secondary lithium batteries[J]. Journal of The Electrochemical Society, 2013, 161(1): A75-A83.
|
15 |
LI W D , XU C Y , PAN X L , et al . High capacity and enhanced structural reversibility ofβ-Li x V2O5 nanorods as the lithium battery cathode[J]. Journal of Materials Chemistry A, 2013, 1(17): 5361-5369.
|
16 |
DELMAS C , COGNAC AURADOU H , COCCIANTELLI J M , et al . The Li x V2O5 system: An overview of the structure modifications induced by the lithium intercalation[J]. Solid State Ionics, 1994, 69(3-4): 257-264.
|
17 |
GALY J . Vanadium pentoxide and vanadium oxide bronzes-Structural chemistry of single (S) and double (D) layer M x V2O5 phases[J]. Journal of Solid State Chemistry, 1992, 100(2): 229-245.
|
18 |
JIANG J , WANG Z , CHEN L . Structural and electrochemical studies on β-Li x V2O5 as cathode material for rechargeable lithium batteries[J]. Journal of Physical Chemistry C, 2007, 111(28): 10707-10711.
|
19 |
WEST K , ZACHAU-CHRISTIANSEN B , JACOBSEN T , et al . Lithium insertion into vanadium pentoxide bronzes[J]. Solid State Ionics, 1995, 76(1): 15-21.
|
20 |
RAISTRICK I D , HUGGINS R A . An electrochemical study of the mixed beta-vanadium bronzes Li y Na x V2O5 and Li y K x V2O5 [J]. Materials Research Bulletin, 1983, 18(3): 337-346.
|
21 |
BADDOUR-HADJEAN R , BACH S , EMERY N , et al . The peculiar structural behaviour of β-Na0.33V2O5 upon electrochemical lithium insertion[J]. Journal of Materials Chemistry, 2011, 21(30): 11296-11305.
|
22 |
SEO I, HWANG G C , KIM J K , et al . Electrochemical characterization of micro-rod β-Na0.33V2O5 for high performance lithium ion batteries [J]. Electrochimica Acta, 2016, 193: 160-165.
|
23 |
MA Y , ZHOU H , ZHANG S , et al . Long straczekite δ-Ca0.24V2O5 ·H2O nanorods and its derived β-Ca0.24V2O5 nanorods as novel host materials for lithium storage with excellent cycling stability[J]. Chemistry - A European Journal, 2017, 23(53): 13221-13232.
|
24 |
LIAW B Y , RAISTRICK I D , HUGGINS R A . Thermodynamic and structural considerations of insertion reactions in lithium vanadium bronze structures[J]. Solid State Ionics, 1991, 45(3-4): 323-328.
|
25 |
WANG P P , XU C Y , LI W D , et al . Low temperature electrochemical performance of β-LiV2O5 cathode for lithium-ion batteries[J]. Electrochimica Acta, 2015, 169: 440-446.
|
26 |
HARDY A , GALY J , CASALOT A , et al . Sur les bronzes de vanadium de formule M x V2O5 [J]. Elsevier France-Edition Scientifiques Medicales Elsevier, 1965, (4): 1056.
|
27 |
ENJALBERT R , GALY J . A refinement of the structure of V2O5 [J]. Acta Crystallographica Section C: Crystal Structure Communications, 1986, 42(11): 1467-1469.
|
28 |
BHAISWAR J , SALUNKHE M , DONGRE S . Synthesis, characterization and thermal, electrical study of CdS-polyaniline nanocomposite via oxidation polymerization[J]. International Journal of Scientific and Research Publications, 2013, 3(1): 1-4.
|
29 |
SHEMIRANI M , SAGHIR M . Three dimensional modeling of Ge0.98Si0.02 crystal growth conducted on board FOTON-M2 in the presence of rotating magnetic field[J]. FDMP: Fluid Dynamics & Materials Processing, 2009, 5(3): 211-230.
|
30 |
CHAKRABARTI A , HERMANN K , DRUZINIC R , et al . Geometric and electronic structure of vanadium pentoxide: A density functional bulk and surface study[J]. Physical Review B, 1999, 59(16): 10583-10591.
|
31 |
KONAROVA M , TANIGUCHI I . Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries [J]. Journal of Power Sources, 2010, 195(11): 3661-3667.
|
32 |
TABERNA P L , MITRA S , POIZOT P , et al . High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications[J]. Nature Materials, 2006, 5(7): 567-573.
|
33 |
YOUSAF M , WANG Y , CHEN Y , et al . A 3D Trilayered CNT/MoSe2/C heterostructure with an expanded MoSe2 interlayer spacing for an efficient sodium storage[J]. Advanced Energy Materials, 2019, 9(30): 1900567-1900578.
|
34 |
CAO D , YAO Z , LIU J , et al . H-Nb2O5 wired by tetragonal tungsten bronze related domains as high-rate anode for Li-ion batteries[J]. Energy Storage Materials, 2018, (11): 152-160.
|
35 |
AN S J , LI J , DANIEL C , et al . The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105: 52-76.
|
36 |
KAO Y H, TANG M , MEETHONG N , et al . Overpotential-dependent phase transformation pathways in lithium iron phosphate battery electrodes[J]. Chemistry of Materials, 2010, 22(21): 5845-5855.
|
37 |
FAN L , MA R , ZHANG Q , et al . Graphite anode for a potassium-ion battery with unprecedented performance[J]. Angewandte Chemie, 2019, 58(31): 10500-10505.
|
38 |
GALY J , DARRIET J , CASALOT A , et al . Structure of the M x V2O5-βand M x V2- y T y O5-β phases[J]. Journal of Solid State Chemistry, 1970, 1(3-4): 339-348.
|
39 |
DICKENS P G , FRENCH S J , HIGHT A T , et al . Phase relationships in the ambient temperature Li x V2O5 system (0.1<x<1.0)[J]. Materials Research Bulletin, 1979, 14(10): 1295-1299.
|