储能科学与技术 ›› 2022, Vol. 11 ›› Issue (2): 467-486.doi: 10.19799/j.cnki.2095-4239.2021.0483

• 储能材料与器件 • 上一篇    下一篇

磷酸铁锂正极材料改性研究进展

冯晓晗1(), 孙杰1,2(), 何健豪2, 魏义华2, 周成冈1(), 孙睿敏1()   

  1. 1.中国地质大学材料与化学学院,湖北 武汉 430070
    2.湖北融通高科先进材料有限公司,湖北 大冶 435100
  • 收稿日期:2021-09-15 修回日期:2021-10-19 出版日期:2022-02-05 发布日期:2022-02-08
  • 通讯作者: 周成冈,孙睿敏 E-mail:2215852440@qq.com;sunjie898@aliyun.com;cgzhou@cug.edu.cn;rmsun@cug.edu.cn
  • 作者简介:冯晓晗(1996—),女,硕士研究生,主要研究方向为磷酸铁锂及普鲁士蓝(白)正极材料,E-mail:2215852440@qq.com|孙杰(1989—),男,博士研究生,主要研究方向为锂离子电池正极材料,E-mail:sunjie898@aliyun.com
  • 基金资助:
    国家自然科学基金青年基金(22109144);中央高校基本科研业务费专项资金(110-162301202673);国家自然科学基金面上(21773217);浙江省自然科学基金项目(LY20B030001)

Research progress in LiFePO4 cathode material modification

Xiaohan FENG1(), Jie SUN1,2(), Jianhao HE2, Yihua WEI2, Chenggang ZHOU1(), Ruimin SUN1()   

  1. 1.Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, Hubei, China
    2.RT Advanced Materials, Daye 435100, Hubei, China
  • Received:2021-09-15 Revised:2021-10-19 Online:2022-02-05 Published:2022-02-08
  • Contact: Chenggang ZHOU,Ruimin SUN E-mail:2215852440@qq.com;sunjie898@aliyun.com;cgzhou@cug.edu.cn;rmsun@cug.edu.cn

摘要:

锂离子二次电池(LIBs)是当今新能源领域的主流储能器件。磷酸铁锂(LiFePO4)凭借高能量密度、低成本、稳定的充放电平台、环境友好、安全性高等优势,成为应用最为广泛的锂离子电池正极材料之一。如何提高其输出功率以及低温下的能量密度和使用寿命,是磷酸铁锂正极材料面临的主要挑战。本文通过对近期相关文献的探讨,归纳总结了近年来针对磷酸铁锂正极材料的主流改性策略。详细分析了元素掺杂提高材料电化学性能的内在机理,梳理了不同包覆剂对磷酸铁锂的保护机制,这两种手段可有效提高磷酸铁锂正极材料的电子电导率和离子扩散速率,实现材料更高的能量密度、更长的循环寿命和更高的倍率性能。此外也总结了磷酸铁锂常见补锂添加剂的特性及其对正极首圈库仑效率和放电比容量的改善行为。综合分析表明,多种元素共掺杂,先进碳材料包覆和高容量补锂材料的添加有望成为提升磷酸铁锂电化学性能的重要策略。最后,对磷酸铁锂正极未来在商业化生产改良和开发柔性电极等方向的发展前景和面临的挑战进行了展望。

关键词: 锂离子电池, 磷酸铁锂, 元素掺杂, 表面包覆, 补锂材料

Abstract:

Lithium-ion batteries (LIBs), as secondary batteries, have rapidly developed into mainstream energy storage devices in the field of new energy. Lithium iron phosphate (LiFePO4) is considered the most promising cathode material for LIBs, with broad applications due to its high specific capacity, low cost, stable charge/discharge plateaus, environmental friendliness, and high safety. However, improving the output power, energy density, and cycle life at low temperatures is the main challenge for LiFePO4. By exploring the recent relevant literature, this review summarizes recent studies on improving the electrochemical performance of LiFePO4, which mainly includes elemental doping, surface coating modification, and lithium supplement additive adding strategies. The intrinsic mechanisms of improving the material's electrochemical performance using doping elements are analyzed in detail. The advantages and protection mechanisms of different types of coating agents for surface modification are summarized. The electronic conductivity and ion diffusion rate of LiFePO4 can be effectively improved by doping and surface coating, which can achieve batteries with higher energy density, longer cycle life, and higher rate performance. The characteristics of common lithium phosphate supplement additives and their improved behavior on the cathode first turn Coulomb efficiency and discharge-specific capacity are also reviewed. Comprehensive analysis indicates that multiple-element co-doping, advanced carbon material coating, and the addition of high-capacity Li-rich materials are expected to become essential strategies for improving the electrochemical performance of LiFePO4. Finally, prospects for the future development of LiFePO4 cathode material are discussed. The direction and challenges associated with additional advancements in commercial production and the development of flexible electrodes are discussed.

Key words: lithium-ion battery, lithium iron phosphate, elemental doping, surface coating, lithium supplement additive

中图分类号: