储能科学与技术 ›› 2016, Vol. 5 ›› Issue (4): 417-421.doi: 10.12028/j.issn.2095-4239.2016.04.003

• 研究及进展 • 上一篇    下一篇

锂离子电池高容量硅碳负极材料研究进展

刘柏男1,徐  泉2,褚  赓1,陆  浩1,殷雅侠2,罗  飞1,郑杰允1,郭玉国2,李  泓1   

  1. 1中国科学院物理研究所,北京 100190;2中国科学院化学研究所,北京 100190;中国科学院先导专项长续航锂电池项目硅负极研发组
  • 收稿日期:2016-06-01 修回日期:2016-06-03 出版日期:2016-07-01 发布日期:2016-07-01
  • 通讯作者: 郑杰允,博士,工程师,研究方向为高能量密度锂离子电池,E-mail:jyzheng@iphy.ac.cn。
  • 作者简介:刘柏男(1994—),男,博士研究生,研究方向为锂离子电池硅基负极材料,E-mail:Liubn1994@163.com
  • 基金资助:
    国家自然科学基金项目(51325206和51502334),国家重点基础研究发展计划(973)项目(2012CB932900)及中国科学院战略先导科技专项(XDA09010102)。

Research progress on the nano-Si/C materials with high capacity for Lithium-iom battery

LIU Bonan1, XU Quan2, CHU Geng1, LU Hao1, YIN Yaxia2, LUO Fei1, ZHENG Jieyun1, GUO Yuguo2, LI Hong1   

  1. 1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; CAS Research Group on High Energy Density Lithium Batteries for EV
  • Received:2016-06-01 Revised:2016-06-03 Online:2016-07-01 Published:2016-07-01

摘要:

纳米硅碳材料主要成分为纳米硅与碳材料,纳米硅具有较小的颗粒尺寸,其储锂容量较高,碳材料具有较高的电子电导,为复合材料提供较好的电子通道;同时将碳与硅材料复合后能缓和硅材料体积形变带来的应力变化;此外,碳作为包覆材料能有效稳定电极材料与电解液的界面,使SEI膜稳定生长。因此,硅碳复合材料有望替代石墨成为下一代高能量密度锂离子电池负极。本文简要介绍了纳米先导专项硅负极研究团队在纳米硅碳材料方面的研究进展。通过持续的研发与技术更新,目前低容量复合材料(380~450 mA·h/g)的反弹系数、效率、压实密度、加工性能皆不亚于目前商品石墨的水平;在高容量及超高容量材料(500~2000 mA·h/g)方面,通过精细的结构设计,循环性能和倍率性能等得到了较大提升。

关键词: 纳米硅碳复合材料, 负极材料, 技术进展, 锂离子电池

Abstract:

Abstract: Nano-Si/C composite materials made up of nano-sized Si and carbon, is considered can solve the problem of large volume variation and unstable SEI formation of Si anode upon cycling, which have always impeded the practical application of Si-based anode. Because the carbon can effectively accommodate strain release and stablize the electrode/electrolyde interface. In this report, the recent progress of nano-Si/C materials is briefly introduced. After continuous research and development, the rebounding, efficiency, compaction density and workability of low capacity composite materials (380~450 mA·h·g-1) has reached the level of state of art commercial graphite material. The cycle and rate performance of high and ultra-high capacity materials (500~2000 mA·h·g-1) has been significantly improved owing to the sophisticated structure design.

Key words: Nano-Si/C composite materials, anode materials, technology progress, Li-ion batteries.