[1] GIELEN Dolf, BOSHELL Francisco, SAYGIN Deger, et al. The role of renewable energy in the global energy transformation[J]. Energy Strategy Reviews, 2019, 24:38-50.
[2] ZHANG Lei, CHEN Zhiqiao, SU Jing, et al. Data mining new energy materials from structure databases[J]. Renewable and Sustainable Energy Reviews, 2019, 107:554-567.
[3] ZHOU Ella, COLE Wesley. Valuing variable renewable energy for peak demand requirements[J]. Energy, 2018, 165:499-511.
[4] WANG Xiaolu, LI Nana, SUN Wei, et al. Quantitative analysis of distributed and centralized development of renewable energy[J]. Global Energy Interconnection, 2018, 1(5):576-584.
[5] KASAEIAN A, RAJAEE F, YAN W M. Osmotic desalination by solar energy:A critical review[J]. Renewable Energy, 2019, 134:1473-1490.
[6] JIN Jian, LIU Mingkai, LIN Pengzhu, et al. Ultra-high temperature processing by concentrated solar energy with accurate temperature measurement[J]. Applied Thermal Engineering, 2019, 150:1337-1344.
[7] LIU Z, YAN Y, FU R, et al. Enhancement of solar energy collection with magnetic nanofluids[J]. Thermal Science and Engineering Progress, 2018, 12(8):130-135.
[8] GURUNG Ashim, QIAO Qiquan. Solar charging batteries:Advances, challenges and opportunities[J]. Joule, 2018, 2(7):1217-1230.
[9] KOVA Marko, STEGNAR Gašper, ALMANSOUR Fouad, et al. Assessing solar potential and battery instalment for self-sufficient buildings with simplified model[J]. Energy, 2019, 173:1182-1195.
[10] WANG Y, ZHOU S, HUO H. Cost and CO2 reductions of solar photovoltaic power generation in China:Perspectives for 2020[J]. Renewable and Sustainable Energy Reviews, 2014, 39:370-380.
[11] PARIDA B, INIYAN S, GOIC R. A review of solar photovoltaic technologies[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3):1625-1636.
[12] DA SILVA R M, FERNANDES J L M. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab[J]. Solar Energy, 2010, 84(12):1985-1996.
[13] ELBREKI A M, ALGHOUL M A, AL-SHAMANI A N, et al. The role of climatic-design-operational parameters on combined PV/T collector performance:A critical review[J]. Renewable and Sustainable Energy Reviews, 2016, 57:602-647.
[14] SYAFIQ A, PANDEY A K, ADZMAN N N, et al. Advances in approaches and methods for self-cleaning of solar photovoltaic panels[J]. Solar Energy, 2018, 162:597-619.
[15] PRAVEEN J, VIJAYARAMARAJU V. Materials for optimizing efficiencies of solar photovoltaic panels[J]. Materials Today:Proceedings, 2017, 4(4):5233-5238.
[16] WANG K, SANDERS S R, DUBEY S, et al. Stirling cycle engines for recovering low and moderate temperature heat:A review[J]. Renewable and Sustainable Energy Reviews, 2016, 62:89-108.
[17] SALAH M, MURPHY P, HALL C, et al. Pure silicon thin-film anodes for lithium-ion batteries:A review[J]. Journal of Power Sources, 2019, 414:48-67.
[18] EZZAERI K, FATNASSI H, BOUHARROUD R, et al. The effect of photovoltaic panels on the microclimate and on the tomato production under photovoltaic canarian greenhouses[J]. Solar Energy, 2018, 173:1126-1134.
[19] SKOPLAKI E, PALYVOS J A. On the temperature dependence of photovoltaic module electrical performance:A review of efficiency/power correlations[J]. Solar Energy, 2009, 83(5):614-624.
[20] WAGNER N P, TRON A, TOLCHARD J R. Silicon anodes for lithium-ion batteries produced from recovered kerf powders[J]. Journal of Power Sources, 2019, 414:486-494.
[21] HAIDAR Z A, ORFI J, KANEESAMKANDI Z. Experimental investigation of evaporative cooling for enhancing photovoltaic panels efficiency[J]. Results in Physics, 2018, 11:690-697.
[22] SURESH A K, KHURANA S, NANDAN G, et al. Role on nanofluids in cooling solar photovoltaic cell to enhance overall efficiency[J]. Materials Today:Proceedings, 2018, 5(9):20614-20620.
[23] 赵春江, 崔容强. 太阳能建材技术的研究与开发(Ⅰ)——光伏屋顶热性能的调查[J]. 太阳能学报, 2003(3):352-356. ZHAO Chunjiang, CUI Rongqiang. Research and development of solar building materials technology (I)-Investigation on thermal performance of photovoltaic roof[J]. Journal of Solar Energy, 2003(3):352-356.
[24] 杨洪兴, 季杰. BIPV对建筑墙体得热影响的研究[J]. 太阳能学报, 1999(3):270-273. YANG Hongxing, JI Jie. Research on the influence of BIPV on the heat of building walls[J]. Journal of Solar Energy, 1999(3):270-273.
[25] 黄护林, 韩东, 孔令宾. 光伏建材型太阳电池板自然通风冷却的研究[J]. 太阳能学报, 2006(3):309-313. HUANG Hulin, HAN Dong, KONG Lingbin. Research on natural ventilation and cooling of photovoltaic building materials solar panels[J]. Journal of Solar Energy, 2006(3):309-313.
[26] GRUBIŠI-ABO F, NIŽETI S, OKO D, et al. Experimental investigation of the passive cooled free-standing photovoltaic panel with fixed aluminum fins on the backside surface[J]. Journal of Cleaner Production, 2018, 176:119-129.
[27] CUCE E, BALI T, SEKUCOGLU S A. Effects of passive cooling on performance of silicon photovoltaic cells[J]. Low-Carbon Technol., 2011, 6:299-308.
[28] CHEN H, CHEN X, LI S, et al. Comparative study on the performance improvement of photovoltaic panel with passive cooling under natural ventilation[J]. Smart Grid Clean Energy, 2014, 3(4):374-379.
[29] TIWARI A, SODHA M S, CHANDRA A, et al. Performance evaluation of photovoltaic thermal solar air collector for composite climate of India[J]. Solar Energy Materials and Solar Cells, 2005, 90(2):175-189.
[30] MOJUMDER J C, ONG H C, CHONG W T, et al. The intelligent forecasting of the performances in PV/T collectors based on soft computing method[J]. Renewable and Sustainable Energy Reviews, 2017, 72:1366-1378.
[31] KASAEIAN A, KHANJARI Y, GOLZARI S, et al. Effects of forced convection on the performance of a photovoltaic thermal system:An experimental study[J]. Experimental Thermal and Fluid Science, 2017, 85:13-21.
[32] ZHAO B, HU M, AO X, et al. Conventional photovoltaic panel for nocturnal radiative cooling and preliminary performance analysis[J]. Energy, 2019, 175:677-686
[33] RAJPUT U J, YANG J. Comparison of heat sink and water type PV/T collector for polycrystalline photovoltaic panel cooling[J]. Renewable Energy, 2018, 116:479-491.
[34] CHINAMHORA T, CHENG G, THAM Y, et al. PV panel cooling system for malaysian climate conditions. In:Proceedings of the international conference on energy and sustainability[C]//Karachi, Pakistan, April 27, 2013.
[35] ZHU L, BOEHM R F, WANG Y, et al. Water immersion cooling of PV cells in a high concentration system[J]. Solar Energy Materials and Solar Cells, 2010, 95(2):538-545.
[36] WANG Z, WANG Y, VIVAR M, et al. Photovoltaic and photocatalytic performance study of SOLWAT system for the degradation of methylene blue, acid Red 26 and 4-chlorophenol[J]. Applied Energy, 2014, 120:1-10.
[37] ABRAHAMYAN Y A, SERAGO V I, AROUTIOUNIAN V M, et al. The efficiency of solar cells immersed in liquid dielectrics[J]. Solar Energy Materials and Solar Cells, 2002, 73(4):367-375.
[38] WANG Y, FANG Z, ZHU L, et al. The performance of silicon solar cells operated in liquids[J]. Applied Energy, 2008, 86(7):1037-1042.
[39] ROSA-CLOT M, ROSA-CLOT P, TINA G M. Submerged photovoltaic solar panel:SP2[J]. Renewable Energy, 2009, 35(8):1862-1865.
[40] WILSON E. Theoretical and operational thermal performance of a ‘wet’ crystalline silicon PV module under Jamaican conditions[J]. Renewable Energy, 2008, 34(6):1655-1660.
[41] SIDDIQUI M U, SIDDIQUI O K, AL-SARKHI A, et al. A novel heat exchanger design procedure for photovoltaic panel cooling application:An analytical and experimental evaluation[J]. Applied Energy, 2019, 239:41-56.
[42] YANG L H, LIANG J D, HSU C Y. Enhanced efficiency of photovoltaic panels by integrating a spray cooling system with shallow geothermal energy heat exchanger[J]. Renewable Energy, 2019, 134:970-981.
[43] ARLOTTI M, RUGGERI G, BELLINA F, et al. Enhancing optical efficiency of thin-film luminescent solar concentrators by combining energy transfer and stacked design[J]. Journal of Luminescence, 2016, 171:215-220.
[44] PAREL T S, PISTOLAS C, DANOS L, et al. Modelling and experimental analysis of the angular distribution of the emitted light from the edge of luminescent solar concentrators[J]. Optical Materials, 2015, 42:532-537.
[45] CORREIA S F H, LIMA P P, ANDRÉ P S, et al. High-efficiency luminescent solar concentrators for flexible waveguiding photovoltaics[J]. Solar Energy Materials and Solar Cells, 2015, 138:51-57.
[46] ZHANG H, LIANG K, CHEN H, et al. Thermal and electrical performance of low-concentrating PV/T and flat-plate PV/T systems:A comparative study[J]. Energy, 2019, 177:66-76.
[47] GAGLIANO A, TINA G M, ANELI S. Comparative assessments of the performances of PV/T and conventional solar plants[J]. Journal of Cleaner Production, 2019, 219:304-315.
[48] KAHWAJI S, JOHNSON M B, KHEIRABADI A C, et al. Fatty acids and related phase change materials for reliable thermal energy storage at moderate temperatures[J]. Solar Energy Materials & Solar Cells, 2017, 167:109-120.
[49] HUO Y, LV J, LI X, et al. Experimental study on the tube plate PV/T system with iron filings filled[J]. Solar Energy, 2019, 185:189-198.
[50] BERGENE T, LØVVIK O M. Model calculations on a flat-plate solar heat collector with integrated solar cells[J]. Solar Energy, 1995, 55:453-462.
[51] KALOGIROU S A, TRIPANAGNOSTOPOULOS Y. Hybrid PV/T solar systems for domestic hot water and electricity production[J]. Energy Conversion and Management, 2006, 47(18):3368-3382.
[52] WANG Wenyi, ZHU Xunmeng, LUO Yuling. Discussion on design of a new PV/T composite system[J]. Journal of Guilin Teachers College, 2019, 33(1):102-104.
[53] WANG Shuang, LUO Huilong, WANG Hao. Comparative analysis of photoelectric/photothermal performance of micro/channel heat pipe PV/T modules with active and passive cooling[J]. Journal of Chemical Industry and Engineering, 2018, 69(6):2432-2438.
[54] JOUHARA H, SZULGOWSKA-ZGRZYWA M, SAYEGH M A, et al. The performance of a heat pipe based solar PV/T roof collector and its potential contribution in district heating applications[J]. Energy, 2016, 136:117-125.
[55] TANG X, QUAN Z, ZHAO Y. Experimental investigation of solar panel cooling by a novel micro heat pipe array[J]. Energy and Power Engineering, 2010, 2:171-174.
[56] PANG W, LIU Y, SHAO S, et al. Empirical study on thermal performance through separating impacts from a hybrid PV/TE system design integrating heat sink[J]. International Communications in Heat and Mass Transfer, 2015, 60:9-12.
[57] HASHIM H, BOMPHREY J J, MIN G. Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system[J]. Renewable Energy, 2016, 87:458-463.
[58] ZHOU Y P, LI M J, YANG W W, et al. The effect of the fullspectrum characteristics of nanostructure on the PV-TE hybrid system performances within multi-physics coupling process[J]. Applied Energy, 2018, 213:169-178.
[59] SOPRANI S, HAERTEL J H K, LAZAROV B S, et al. A design approach for integrating thermoelectric devices using topology optimization[J]. Applied Energy, 2016, 176:49-64.
[60] ALI H, YILBAS B S, AL-SULAIMAN F A. Segmented thermoelectric generator:Influence of pin shape configuration on the device performance[J]. Energy, 2016, 111:439-452
[61] JOYBARI M M, HAGHIGHAT F, MOFFAT J, et al. Heat and cold storage using phase change materials in domestic refrigeration systems[J]. Energy and Buildings, 2015, 106:111-124.
[62] BOUHAL T, EL RHAFIKI T, KOUSKSOU T, et al. PCM addition inside solar water heaters:Numerical comparative approach[J]. Journal of Energy Storage, 2018, 19:232-246.
[63] YOUSEF M S, HASSAN H. Energetic and exergetic performance assessment of the inclusion of phase change materials (PCM) in a solar distillation system[J]. Energy Conversion and Management, 2019, 179:349-361.
[64] PING P, PENG R, KONG D, et al. Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment[J]. Energy Conversion and Management, 2018, 176:131-146.
[65] ZOU D, LIU X, HE R. Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module[J]. Energy Conversion and Management, 2019, 180:1196-1202.
[66] XU X, ZHANG X, LIU S. Experimental study on cold storage box with nanocomposite phase change material and vacuum insulation panel[J]. International Journal of Energy Research, 2018, 42(14):4429-4438.
[67] DA CUNHA J P, EAMES P. Thermal energy storage for low and medium temperature applications using phase change materials-A review[J]. Applied Energy, 2016, 177:227-238.
[68] LI Y C M, CHEN Y H A. Assessing the thermal performance of three cold energy storage materials with low eutectic temperature for food cold chain[J]. Energy, 2016, 115:238-256.
[69] KOZAK Y, FARID M, ZISKIND G. Experimental and comprehensive theoretical study of cold storage packages containing PCM[J]. Applied Thermal Engineering, 2017, 115:899-912.
[70] PIELICHOWSKA K, PIELICHOWSKI K. Phase change materials for thermal energy storage[J]. Prog. Mater. Sci., 2014, 64:67-123.
[71] CHANDRA D, CHELLAPPA R, CHIEN W M. Thermodynamic assessment of binary solid-state thermal storage materials[J]. Phys. Chem. Solids, 2005, 66:235-240.
[72] DU X, WANG H, WU Y, et al. Solid-solid phase-change materials based on hyperbranched polyurethane for thermal energy storage[J]. Appl. Polym. Sci., 2017, 134:1-8.
[73] WANG T, WANG S, LUO R, et al. Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage[J]. Applied Energy, 2016, 171:113-119.
[74] HACHEM F, ABDULHAY B, RAMADAN M, et al. Improving the performance of photovoltaic cells using pure and combined phase change materials-Experiments and transient energy balance[J]. Renewable Energy, 2017, 107:567-575.
[75] CHANDEL S S, AGARWAL T. Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems[J]. Renewable and Sustainable Energy Reviews, 2017, 73:1342-1351. |