[1] 胡庆康. 相变材料在建筑节能中的应用及其模拟实验[D]. 淮南:安徽理工大学, 2016. HU Qingkang. Application of phase change materials in building energy saving and its simulation experiment[D]. Huainan:Anhui University of Science and Technology, 2016.
[2] LIU M, SAMAN W, BRUNO F. Development of a novel refrigeration system for refrigerated trucks incorporating phase change material[J]. Applied Energy, 2012, 92:336-342.
[3] LV Y, SITU W, YANG X, et al. A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management[J]. Energy Conversion&Management, 2018:250-259.
[4] JEREMY C C, CHUA K J, ISLAM M R. A study on latent heat energy storage performance of tetradecane[J]. Energy Procedia, 2017, 142:3208-3213.
[5] MAHDAOUI M, KOUSKSOU T, MARÍN J M, et al. Numerical simulation for predicting DSC crystallization curves of tetradecanehexadecane paraffin mixtures[J]. Thermochimica Acta, 2014, 591:101-110.
[6] KARIZNOVI Mohammad, NOUROZIEH Hossein, ABEDI Jalal. Experimental and thermodynamic modeling study on (vapor+liquid) equilibria and physical properties of ternary systems (methane+ndecane+n-tetradecane)[J]. Fluid Phase Equilibria, 2012, 334:30-36.
[7] JIANG Haifeng, XU Qianghui, HUANG Chao, et al. Effect of temperature on the effective thermal conductivity of n-tetradecanebased nanofluids containing copper nanoparticles[J]. Particuology, 2015, 22:95-99.
[8] FU Wanwan, LIANG Xianghui, XIE Hongzhou, et al. Thermophysical properties of n-tetradecane@polystyrene-silica composite nanoencapsulated phase change material slurry for cold energy storage[J]. Energy and Buildings, 2017, 136:26-32.
[9] SCHALBART P, KAWAJI M, FUMOTO K. Formation of tetradecane nanoemulsion by low-energy emulsification methods[J]. International Journal of Refrigeration, 2010, 33:1612-1624.
[10] DORAZIO Lucas, CASTALDI M J. Autothermal reforming of tetradecane (C14H30):A mechanistic approach[J]. Catalysis Today, 2008, 136:273-280.
[11] 周孙希, 章学来, 刘升. 十四烷-正辛酸有机复合相变材料的制备和性能[J]. 储能科学与技术, 2018, 7(4):692-697. ZHOU Sunxi, ZHANG Xuelai, LIU Sheng. Preparation and properties of tetradecane-n-octanoic acid organic composite phase change materials[J]. Energy Storage Science and Technology, 2018, 7(4):692-697.
[12] 段远源, 吴兴辉, 龚玮, 等. 十四烷纳米流体导热系数影响因素探究[J]. 热科学与技术, 2015, 14(6):431-435. DUAN Yuanyuan, WU Xinghui, GONG Wei, et al. Influencing factors of thermal conductivity of tetradecane nanofluids[J]. Thermal Science and Technology, 2015, 14(6):431-435.
[13] 王瑞杰, 金兆国, 丁汀, 等. 基于正十四烷微胶囊和微封装技术的相变材料技术研究[J]. 载人航天, 2015, 21(3):249-256. WANG Ruijie, JING Zhaoguo, DING Ting, et al. Research on phase change material technology based on n-tetradecane microcapsules and micro-encapsulation technology[J]. Manned Space Flight, 2015, 21(3):249-256.
[14] YIN K L, XU D J, XIA Q, et al. Molecular dynamics simulation on solidification process of n-hexadecane systems[J]. Acta Phys. Chim. Sin., 2004, 20(3):302-305.
[15] 饶中浩. 基于固液相变传热介质的动力电池热管理研究[D]. 广州:华南理工大学, 2013. RAO Zhonghao, Research on thermal management of power battery based on solid-liquid phase change heat transfer medium[D]. Guangzhou:South China University of Technology, 2013.
[16] TAO C G, FENG H J, ZHOU J, et al. Molecular simulation of oxygen adsorption and diffusion in polypropylene[J]. Acta Phys. Chim. Sin., 2009, 25(7):1373-1378.
[17] RAO Zhonghao, WANG Shuangfeng, PENG Feifei. Self diffusion and heat capacity of n-alkanes based phase change materials:A molecular dynamics study[J]. International Journal of Heat and Mass Transfer, 2013(64):581-589.
[18] 杨科大, 徐世爱. 最大熵原理推导自由结合链末端据的径向分布函数[J]. 高分子通报, 2008(4):62-64. YANG Keda, XU Shiai. The maximum entropy principle deduces the radial distribution function of the free end of the chain[J]. Polymer Notification, 2008(4):62-64.
[19] 陈正隆, 徐为人, 汤立达. 分子模拟的理论与实践[M]. 北京:化学工业出版社, 2007:110-111. CHENG Zhonglong, XU Weiren, TANG Lida. Theory and practice of molecular simulation[M]. Beijing:Chemical Industry Press, 2007:110-111. |