1 |
CHENG C , RUI X , SHEN W . A lithium-ion battery-in-the-loop approach to test and validate multi-scale dual H infinity filters for state of charge and capacity estimation[J]. IEEE Transactions on Power Electronics, 2018(99): doi: 10.1109/TPEL.2017.2670081.
|
2 |
MENG J , LUO G , FEI G . Lithium polymer battery state-of-charge estimation based on adaptive unscented Kalman filter and support vector machine[J]. IEEE Transactions on Power Electronics, 2015, 31(3): 2226-2238.
|
3 |
ZHANG Y , RUI X , HE H , et al . Lithium-ion battery pack state of charge and state of energy estimation algorithms using a hardware-in-the-loop validation[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4421-4431.
|
4 |
SHENG H , XIAO J , WANG P . Lithium iron phosphate battery electric vehicle state-of-charge estimation based on evolutionary gaussian mixture regression[J]. IEEE Transactions on Industrial Electronics, 2016, 64(1): 544-551.
|
5 |
盛瀚民 .计及数据不可靠性的动力电池组SOC估计方法研究[D]. 成都: 西南交通大学, 2017.
|
|
SHENG Hanmin . A study on power battery SOC estimation considering date uncertainty[D]. Chengdu: Southwest Jiatong University, 2017.
|
6 |
程晨, 顾伟, 褚建新, 等 . 基于Sage-Husa自适应滤波算法的锂电池荷电状态估计[J].南京工业大学学报(自然科学版), 2016, 38(3): 126-130.
|
|
CHENG Chen , GU Wei , CHU Jianxin , et al . State of charge estimation of lithium batteries based on Sage-Husa adaptive filter algorithm[J]. Journal of Nanjing Tech University (Natural Science Edition), 2016, 38(3): 126-130.
|
7 |
田茂飞, 安治国, 陈星, 等 . 基于在线参数辨识和AEKF的锂电池SOC估计[J]. 储能科学与技术, 2019, 8(4): 745-750.
|
|
TIAN Maofei , AN Zhiguo , CHEN Xing , et al . SOC estimation of lithium battery based online parameter identification and AEKF[J]. Energy Storage Science and Technology, 2019, 8(4): 745-750.
|
8 |
LI B , BEI S . Estimation algorithm research for lithium battery SOC in electric vehicles based on adaptive unscented Kalman filter[J]. Neural Computing and Applications, 2018: doi: 10.1007/s00521-018-3901-7.
|
9 |
YUE L , CHATTOPADHYAY P , XIONG S , et al . Dynamic data-driven and model-based recursive analysis for estimation of battery state-of-charge[J]. Applied Energy, 2016, 184: 266-275.
|
10 |
苏振浩, 李晓杰, 秦晋, 等 . 基于BP人工神经网络模型的动力电池SOC估计方法[J]. 储能科学与技术, 2019, 8(5): 868-873.
|
|
SU Zhenhao , LI Xiaojie , QIN Jin , et al . SOC estimation method of power battery based on BP artificial neural network[J]. Energy Storage Science and Technology, 2019, 8(5): 868-873.
|
11 |
戴庚, 耿诗尧 .基于最小二乘支持向量机的SOC估计方法[J]. 信息与电脑(理论版), 2018, 39(2): 36-37.
|
|
DAI Geng , GENG Shiyao . SOC estimation based on least squares support vector machines[J].China Computer & Communication, 2018, 39(2): 36-37.
|
12 |
MEI C , SU Y , LIU G , et al . Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes[J]. Chinese Journal of Chemical Engineering, 2016, 25(1): 116-122.
|
13 |
SAHINOGLU G O , PAJOVIC M , SAHINOGLU Z , et al . Battery state of charge estimation based on regular/recurrent gaussian process regression[J]. IEEE Transactions on Industrial Electronics, 2017(99): doi: 10.1109/TIE.2017.2764869.
|
14 |
LIU D , PANG J , ZHOU J , et al . Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression[J]. Microelectronics Reliability, 2013, 53(6): 832-839.
|
15 |
何志昆, 刘光斌, 赵曦晶, 等 . 高斯过程回归方法综述[J]. 控制与决策, 2013(8): 1121-1129.
|
|
HE Zhikun , LI Guangbin , ZHAO Xijing , et al . Overview of Gaussian process regression [J]. Control and Decision, 2013(8): 1121-1129.
|
16 |
李嘉波, 魏孟, 叶敏, 等 . 基于高斯过程回归的锂离子电池SOC估计[J]. 储能科学与技术, 2019, 9(1): 131-137.
|
|
LI Jiabo , WEI Meng , YE Min , et al . SOC estimation of lithium-ion batteries based on Gauss process regression[J]. Energy Storage Science and Technology, 2019, 9(1): 131-137.
|
17 |
周亚同, 赵翔宇, 何峰, 等 . 基于高斯过程混合模型的大气温湿度预测[J]. 农业工程学报, 2018, 34(5): 219-226.
|
|
ZHOU Yatong , ZHAO Xiangyu , HE Feng , et al . Atmospheric temperature and humidity prediction of Gaussian process mixed model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(5): 219-226.
|
18 |
杨飞, 乔铁柱, 庞宇松, 等 . 基于改进的高斯混合回归的球磨机料位软测量[J]. 现代电子技术, 2018, 41(5): 153-158.
|
|
YANG Fei , QIAO Tiezhu , PANG Yusong , et al . Soft measurement for ball mill fill level based on improved Gaussian mixture regression[J]. Modern Electronics Technique, 2018, 41(5): 153-158.
|