1 |
任东生, 冯旭宁, 韩雪冰, 等 . 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6): 957-966.
|
|
REN Dongsheng , FENG Xuning , HAN Xuebing , et al . Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966
|
2 |
CHEN C , GUO L , NIU H C , et al . Characteristics of thermal runaway propagation of lithium ion battery module induced by thermal abuses in enclosure space[C]//Proceedings of 11th Asia-Oceania Symposium on Fire Science and Technology, Singapore, F 2020, 2020 Springer Singapore.
|
3 |
WANG Q , JIANG B , LI B , et al . A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2016, 64: 106-128.
|
4 |
WU W , WANG S , WU W , et al . A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281.
|
5 |
PANCHAL S , DINCER I , AGELIN-CHAAB M , et al . Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions[J]. Applied Thermal Engineering, 2016, 96: 190-199.
|
6 |
巴黎明, 唐堃, 康利斌, 等 . 高功率锂离子电池热效应和结构优化[J]. 电源技术, 2018, 42(11): 1611-4+7.
|
|
BA Liming , TANG Kun , KANG Libin , et al . Thermal effects and structure optimization of high power Li-ion batteries[J]. Chinese Journal of Power Sources, 2018, 42(11): 1611-1614+7
|
7 |
YI J , KIM U S , SHIN C B , et al . Modeling the temperature dependence of the discharge behavior of a lithium-ion battery in low environmental temperature[J]. Journal of Power Sources, 2013, 244: 143-148.
|
8 |
JUNG S , KANG D . Multi-dimensional modeling of large-scale lithium-ion batteries[J]. Journal of Power Sources, 2014, 248: 498-509.
|
9 |
MEI W , CHEN H , SUN J , et al . Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective[J]. Applied Thermal Engineering, 2018, 142: 148-165.
|
10 |
ZHAO R , GU J , LIU J . An investigation on the significance of reversible heat to the thermal behavior of lithium ion battery through simulations[J]. Journal of Power Sources, 2014, 266: 422-432.
|
11 |
张志超, 郑莉莉, 杜光超, 等 . 基于多尺度锂离子电池电化学及热行为仿真实验研究[J]. 储能科学与技术, 2020, 9(1): 124-130.
|
|
ZHANG Zhichao , ZHENG Lili , DU Guangchao , et al . Electrochemical and thermal behavior simulation experiments based on multiscale lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 124-130.
|
12 |
ALIPOUR M , ESEN E , KIZILEL R . Investigation of 3-D multilayer approach in predicting the thermal behavior of 20 A·h Li-ion cells[J]. Applied Thermal Engineering, 2019, 153: 620-632.
|
13 |
GHALKHANI M , BAHIRAEI F , ANAZRI G , et al . Electrochemical-thermal model of pouch-type lithium-ion batteries[J]. Electrochimica Acta, 2017, 247: 569-587.
|
14 |
HUANG Y , LAI H . Effects of discharge rate on electrochemical and thermal characteristics of LiFePO4/graphite battery[J]. Applied Thermal Engineering, 2019, 157: doi: 10.1016/j.applthermaleng.2019.113744.
|
15 |
MASTALI M , FOREMAN E , MODJTAHEDI A , et al . Electrochemical-thermal modeling and experimental validation of commercial graphite/LiFePO4 pouch lithium-ion batteries[J]. International Journal of Thermal Sciences, 2018, 129: 218-230.
|
16 |
XU M , ZHANG Z , WANG X , et al . Two-dimensional electrochemical-thermal coupled modeling of cylindrical LiFePO4 batteries[J]. Journal of Power Sources, 2014, 256: 233-243.
|
17 |
XU M , ZHANG Z , WANG X , et al . A pseudo three-dimensional electrochemical-thermal model of a prismatic LiFePO4 battery during discharge process[J]. Energy, 2015, 80: 303-317.
|
18 |
CHIEW J , CHIN C S , TOH W D, et al . A pseudo three-dimensional electrochemical-thermal model of a cylindrical LiFePO4/graphite battery[J]. Applied Thermal Engineering, 2019, 147: 450-463.
|