1 |
NUNES V M B, QUEIROS C S, LOURENCO M J V, et al. Molten salts as engineering fluids—A review Part I. Molten alkali nitrates[J]. Applied Energy, 2016, 183: 603-611.
|
2 |
BELÉN M S, JAVIER N M, JAVIER N M, et al. Molten salt-based nanofluids as efficient heat transfer and storage materials at high temperatures. An overview of the literature[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3924-3945
|
3 |
NICOLE P, THOMAS B, CLAUDIA M, et al. Thermal energy storage-overview and specific insight into nitrate salts for sensible and latent heat storage[J]. Beilstein Journal of Nanotechnology, 2015, 6: 1487-1497.
|
4 |
葛志伟, 叶锋, LASFARGUES M, 等. 中高温储热材料的研究现状与展望[J]. 储能科学与技术, 2012, 1(2):89-102.
|
|
GE Z F, YE F, LASFARGUES M, et al. Recent progress and prospective of medium and high temperatures thermal energy storage materials[J]. Energy Storage Science and Technology, 2012, 1(2): 89-102.
|
5 |
杜凤丽, 原郭丰, 常春, 等. 太阳能热发电技术产业发展现状与展望[J]. 储能科学与技术, 2013, 2(6): 551-564.
|
|
DU L F, YUAN G F, CHANG C, et al. Current status and perspective[J]. Energy Storage Science and Technology, 2013, 2(6): 551-564.
|
6 |
吴玉庭, 任楠, 马重芳, 等. 熔融盐显热蓄热技术的研究与应用进展[J]. 储能科学与技术, 2013, 2(6): 586-592.
|
|
WU Y T, REN N, MA C F, et al. Research and application of molten salts for sensible heat storage[J]. Energy Storage Science and Technology, 2013, 2(6): 586-592.
|
7 |
DINTER F, GONZALEZ D M. Operability, reliability and economic benefits of CSP with thermal energy storage: First year of operation of ANDASOL 3[J]. Energy Procedia, 2014, 49: 2472-2481.
|
8 |
SCHULLER M, SHAO Q, LALK T. Experimental investigation of the specific heat of a nitrate-alumina nanofluid for solar thermal energy storage systems[J]. International Journal of Thermal Sciences, 2015, 91: 142-145.
|
9 |
CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage[J]. Nanoscale Research Letters, 2013, 8(1): 448-458.
|
10 |
BETTS M. The effects of nanoparticle augmentation of nitrate thermal storage materials for use in concentrating solar power applications[J]. Territoire En Mouvement, 2011, 22: 98-111.
|
11 |
LASFARGUES M, GENG Q, CAO H, et al. Mechanical dispersion of nanoparticles and its effect on the specific heat capacity of impure binary nitrate salt mixtures[J]. Nanomaterials, 2015, 5(3): 1136-1146.
|
12 |
STARACE A K, GOMEZ J C, GLATZMAIER G C. Can particle-stabilized inorganic dispersions be high-temperature heat-transfer and thermal energy storage fluids[J]. Jornal of Materials Science, 2013, 48(11): 4023-4031.
|
13 |
DUDDA B, SHIN D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. International Journal of Thermal Sciences, 2013, 69: 37-42.
|
14 |
HUANG Y, CHENG X M, LI Y Y, et al. Effect of sol-gel combustion synthesis of nanoparticles on thermal properties of KNO3-NaNO3[J]. Solar Energy Materials and Solar Cells, 2018, 188: 190-201.
|
15 |
LASFARGUES M, BELL A, DING Y L. In-situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications[J]. Journal of Nanoparticle Research, 2016, 18: doi: 10.1007/s11051-016-3460-8.
|
16 |
LUO Y, DU X Z, AWAD A, et al. Thermal energy storage enhancement of a binary molten salt via in-situ produced nanoparticles[J]. International Journal of Heat and Mass Transfer, 2017, 104: 658-664.
|
17 |
BA-ABBAD M M, CHAI P V, TAKRIFF M S, et al. Optimization of nickel oxide nanoparticle synthesis through the sol-gel method using Box-Behnken design[J]. Materials & Design, 2015, 86: 948-956.
|
18 |
ALAGIRI M, PONNUSAMY S, MUTHAMIZHCHELVAN C. Synthesis and characterization of NiO nanoparticles by sol-gel method[J]. Journal of Materials Science Materials in Electronics, 2012, 23(3): 728-732.
|
19 |
DANIAL A S, SALEH M M, SALIH S A, et al. On the synthesis of nickel oxide nano-particles by sol-gel technique and its electrocatalytic oxidation of glucose[J].Journal of Power Sources, 2015, 293: 101-108.
|
20 |
SHIN D, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat and Mass Transfer, 2011, 54(5/6): 1064-1070.
|
21 |
TIZNOBAIK H, SHIN D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 542-548.
|
22 |
TIZNOBAIK H, BANERJEE D, SHIN D. Effect of formation of 'long range' secondary dendritic nanostructures in molten salt nanofluids on the values of specific heat capacity[J]. International Journal of Heat and Mass Transfer, 2015, 91: 342-346.
|
23 |
ZHANG L D, CHEN X, WU Y T, et al. Effect of nanoparticle dispersion on enhancing the specific heat capacity of quaternary nitrate for solar thermal energy storage application[J]. Solar Energy Materials and Solar Cells, 2016, 157: 808-813.
|
24 |
BUONGIORNO J. Convective transport in nanofluids[J]. Journal of Heat Transfer, 2006, 128(3): doi: 10.1115/1.2150834.
|
25 |
TIZNOBAIK H, SHIN D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 542-548.
|
26 |
HO M X, PAN C. Optimal concentration of alumina nanoparticles in molten hitec salt to maximize its specific heat capacity[J]. International Journal of Heat and Mass Transfer, 2014, 70: 174-184.
|
27 |
SHIN D, BANERJEE D. Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures[J]. Journal of Heat Transfer, 2013, 135(3): 32-81.
|