储能科学与技术 ›› 2020, Vol. 9 ›› Issue (6): 1890-1896.doi: 10.19799/j.cnki.2095-4239.2020.0203

• 储能系统与工程 • 上一篇    下一篇

用户侧电化学储能装置最优系统配置与充放电策略研究

曹锐鑫(), 张 瑾, 朱嘉坤   

  1. 陕西鼓风机(集团)有限公司,陕西 西安 710075
  • 收稿日期:2020-06-04 修回日期:2020-07-02 出版日期:2020-11-05 发布日期:2020-10-28
  • 作者简介:联系人:曹锐鑫(1986—),女,高级工程师,研究方向为储能技术及分布式能源,E-mail:395222817@qq.com

Study of optimal system configuration and charge-discharge strategy of user-side battery energy storage

Ruixin CAO(), Jin ZHANG, Jiakun ZHU   

  1. Shaanxi Blower (Group) Co. Ltd. , Xi'an 710075, Shaanxi, China
  • Received:2020-06-04 Revised:2020-07-02 Online:2020-11-05 Published:2020-10-28

摘要:

基于两部制电价,分析了用电成本节约收益模式和储能各子系统的投资成本,针对变压器容量在315 kV·A以上的大工业用户建立了电化学储能系统经济模型。考虑了特定地区分时电价的季节性和逐时电负荷特征,提取不同典型日作为模型计算对象;选用安全性高、充放电效率高、循环寿命长的磷酸铁锂电池作为储能系统的充放电介质,以储能装置经济性最优为目标,设定模型参数约束条件,同时考虑地区补贴政策,通过采用遗传算法对系统配置(系统额定容量及额定充放电功率)及充放电策略进行双层优化计算。借助于模型以苏州某大工业用户为案例进行储能系统计算,分别得到削峰填谷、削峰填谷+需量调节两种模式下的储能装置最优系统配置、最优系统充放电策略及系统回收期。本文为用户侧电化学储能系统配置、充放电策略、系统回收期计算提供科学的方法;通过对比两种收益模式下的储能系统配置及回收期,得出考虑需量调节收益将有效降低系统回收期,为储能技术的大规模商业化推广提供有利条件。

关键词: 用户侧电化学储能, 系统配置, 充放电策略, 回收期

Abstract:

In this study, the mode of conserving income for the electricity and subsystem investment costs of the battery energy storage system (BESS) is analyzed based on a two-part tariff. An economic mathematical model of the user-side BESS is established for a large industry enterprise, whose transformer capacity is above 315 kVA. Considering the seasonal feature of the time-of-use electricity price in a specific region and the hourly load characteristics, different typical days are extracted as the calculation object of the model. A lithium iron phosphate battery with high safety, high charge-discharge efficiency, and long cycle life is selected as the BESS charging medium. The model parameter constraints are set. The regional subsidy policy is also considered. Taking the optimal economy of the energy storage device as the goal, the BESS configuration, including the rated capacity and the rated charge–discharge power, and the charge-discharge strategy are calculated using genetic algorithms. In addition, a large industrial enterprise in Suzhou is taken as an example for calculating the BESS using the established model. The optimal system configuration, optimal system charge-discharge strategy, and system recovery period are obtained under two modes: ① peak load shifting and ② peak load shifting combined with load demand regulation. Accordingly, the scientific method for calculating the configuration, charge-discharge strategy, and payback period of the user-side BESS are provided. By comparing the configuration and the payback period of the BESS under the two modes, we conclude that considering the load demand regulation income would effectively reduce the system payback period and provide favorable conditions for the large-scale commercialization of the energy storage technology.

Key words: user-side battery energy storage system, system configuration, charging strategy, payback period

中图分类号: