1 |
SAFARI A, SAIDUR R, SULAIMAN F A, et al. A review on supercooling of phase change materials in thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 905-919.
|
2 |
ZHANG P, XIAO X, MA Z W. A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied Energy, 2016, 165: 472-510.
|
3 |
SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345.
|
4 |
ZHAO B C, LI T X, GAO J C, et al. Latent heat thermal storage using salt hydrates for distributed building heating: A multi-level scale-up research[J]. Renewable and Sustainable Energy Reviews, 2020, 121: doi: 10.1016/j.rser.2020.109712.
|
5 |
DANNEMAND M, SCHULTZ J M, JOHANSEN J B, et al. Long term thermal energy storage with stable supercooled sodium acetate trihydrate[J]. Applied Thermal Engineering, 2015, 91: 671-678.
|
6 |
KONG W Q, DANNEMAND M, JOHANSEN J B, et al. Experimental investigations on heat content of supercooled sodium acetate trihydrate by a simple heat loss method[J]. Solar Energy, 2016, 139: 249-257.
|
7 |
SHIN H K, PARK M, KIM H Y, et al. Thermal property and latent heat energy storage behavior of sodium acetate trihydrate composites containing expanded graphite and carboxymethyl cellulose for phase change materials[J]. Applied Thermal Engineering, 2015, 75: 978-983.
|
8 |
DANNEMAND M, JOHANSEN J B, FURBO S. Solidification behavior and thermal conductivity of bulk sodium acetate trihydrate composites with thickening agents and graphite[J]. Solar Energy Materials and Solar Cells, 2016, 145: 287-295.
|
9 |
SEO K, SUZUKI S, KINOSHITA T, et al. Effect of ultrasonic irradiation on the crystallization of sodium acetate trihydrate utilized as heat storage material[J]. Chemical Engineering & Technology, 2012, doi: 10.1002/ceat.201100680.
|
10 |
DANNEMAND M, DRAGSTED J, FAN J H, et al. Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures[J]. Applied Energy, 2016, 169: 72-80.
|
11 |
ZHOU G B, XIANG Y T. Experimental investigations on stable supercooling performance of sodium acetate trihydrate PCM for thermal storage[J]. Solar Energy, 2017, 155: 1261-1272.
|
12 |
JIN X, ZHANG S L, MEDINA M A, et al. Experimental study of the cooling process of partially-melted sodium acetate trihydrate[J]. Energy and Buildings, 2014, 76: 654-660.
|
13 |
GUION J, TEISSEIRE M. Nucleation of sodium acetate trihydrate in thermal heat storage cycles[J]. Solar Energy, 1991, 46(2): 97-100.
|
14 |
KIMURA H, KAI J. Phase change stability of sodium acetate trihydrate and its mixtures[J]. Solar Energy, 1985, 35(6): 527-534.
|
15 |
MAO J F, LI J T, LI J, et al. A selection and optimization experimental study of additives to thermal energy storage material sodium acetate trihydrate[C]//2009 International Conference on Energy and Environment Technology. October 16-18, 2009, Guilin, China. IEEE, 2009: 14-17.
|
16 |
HE Y, ZHANG N, YUAN Y P, et al. Improvement of supercooling and thermal conductivity of the sodium acetate trihydrate for thermal energy storage with α-Fe2O3 as addictive[J]. Journal of Thermal Analysis and Calorimetry, 2018, 133(2): 859-867.
|
17 |
XIAO Q Q, FAN J X, FANG Y B, et al. The shape-stabilized light-to-thermal conversion phase change material based on CH3COONa·3H2O as thermal energy storage media[J]. Applied Thermal Engineering, 2018, 136: 701-707.
|
18 |
杜晓冬, 章学来, 丁锦宏, 等. 纳米成核剂对三水乙酸钠蓄热性能的影响[J]. 建筑节能, 2017, 45(9): 25-28, 59.
|
|
DU X D, ZHANG X L, DING J H, et al. Effects of nanoparticles nucleating agents on the performance of sodium acetate trihydrate[J]. Building Energy Efficiency, 2017, 45(9): 25-28, 59.
|
19 |
GARAY RAMIREZ B M L, GLORIEUX C, SAN MARTIN MARTINEZ E, et al. Tuning of thermal properties of sodium acetate trihydrate by blending with polymer and silver nanoparticles[J]. Applied Thermal Engineering, 2014, 62(2): 838-844.
|
20 |
HE Y, SONG Y L, YUAN Y P, et al. Experimental investigation on the supercooling and heat conduction of sodium acetate trihydrate/copper foam/YSZ composite phase change material[J]. Journal of Thermal Analysis and Calorimetry, 2021, 143(4): 3275-3284.
|
21 |
CUI W L, YUAN Y P, SUN L L, et al. Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials[J]. Renewable Energy, 2016, 99: 1029-1037.
|
22 |
FASHANDI M, LEUNG S N. Sodium acetate trihydrate-chitin nanowhisker nanocomposites with enhanced phase change performance for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 178: 259-265.
|
23 |
MAO J F, HOU P M, LIU R R, et al. Preparation and thermal properties of SAT-CMC-DSP/EG composite as phase change material[J]. Applied Thermal Engineering, 2017, 119: 585-592.
|
24 |
LI X, ZHOU Y, NIAN H, et al. Preparation and thermal energy storage studies of CH3COONa·3H2O-KCl composites salt system with enhanced phase change performance[J]. Applied Thermal Engineering, 2016, 102: 708-715.
|
25 |
LI T X, WU D L, HE F, et al. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2017, 115: 148-157.
|
26 |
JANKOWSKI N R, MCCLUSKEY F P. A review of phase change materials for vehicle component thermal buffering[J]. Applied Energy, 2014, 113: 1525-1561.
|
27 |
MA Z W, BAO H S, ROSKILLY A P. Study on solidification process of sodium acetate trihydrate for seasonal solar thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2017, 172: 99-107.
|
28 |
PENG S Q, HUANG J, WANG T Y, et al. Effect of fumed silica additive on supercooling, thermal reliability and thermal stability of Na2HPO4·12H2O as inorganic PCM[J]. Thermochimica Acta, 2019, 675: 1-8.
|
29 |
ZHAO L, XING Y M, LIU X, et al. Thermal performance of sodium acetate trihydrate based composite phase change material for thermal energy storage[J]. Applied Thermal Engineering, 2018, 143: 172-181.
|