储能科学与技术 ›› 2023, Vol. 12 ›› Issue (9): 2833-2841.doi: 10.19799/j.cnki.2095-4239.2023.0214

• 储能系统与工程 • 上一篇    下一篇

压缩空气储能系统供冷性能提升

李文慧1(), 焦勇涵2, 郭歌3, 李佳俊2, 邓建强2()   

  1. 1.国网陕西省电力有限公司电力科学研究院,陕西 西安 710100
    2.西安交通大学,陕西 西安 710049
    3.国网陕西省电力有限公司,陕西 西安 710048
  • 收稿日期:2023-04-10 修回日期:2023-05-03 出版日期:2023-09-05 发布日期:2023-09-16
  • 通讯作者: 邓建强 E-mail:15126881@qq.com;dengjq@xjtu.edu.cn
  • 作者简介:李文慧(1987—),男,高级工程师,主要研究方向为高电压试验技术及电力设备状态诊断与评价研究,E-mail:15126881@qq.com
  • 基金资助:
    国网陕西省电力有限公司科技项目(5226KY23000Q)

Research on improving cooling performance of compressed air energy storage system

Wenhui LI1(), Yonghan JIAO2, Ge GUO3, Jiajun LI2, Jianqiang DENG2()   

  1. 1.Stage Grid Shaanxi Electric Power Research Institute, Xi'an 710100, Shaanxi, China
    2.Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
    3.Stage Grid Shaanxi Electric Power company limited, Xi'an 710048, Shaanxi, China
  • Received:2023-04-10 Revised:2023-05-03 Online:2023-09-05 Published:2023-09-16
  • Contact: Jianqiang DENG E-mail:15126881@qq.com;dengjq@xjtu.edu.cn

摘要:

绝热压缩空气储能系统能够实现冷热电三联输出。若应用压缩空气储能系统代替制冷设备供冷,则可利用抵扣的制冷设备投资抵消一部分储能系统投资,从而缩短储能系统回收周期。另外,错峰用电可减少夏季大规模供冷设备对峰电资源的消耗。本工作构建了气罐容积5000 m3,气罐贮存压力范围4.6~10.0 MPa的绝热压缩空气储能系统,系统产出的冷量通过引射器产出冷气的方式供给用户,模拟了系统充释能过程以获得系统的能量产出特性。以供冷季节产冷最大化,非供冷季节产电最大化为主目标,分析确定了系统关键配置以及运行参数。研究结果表明,该系统在供冷季节的最大产冷量为36.96 GJ,可为190户供冷。与以经济效益最大化为目标的压缩空气储能三联产系统相比,本系统的供冷能力提升287.76%。调控预热热水流量可以改变系统能量产出比例,以使系统匹配用户多变的能量需求。若运行在最大供冷工况下,本系统回收周期为12.39年。本工作构建的系统旨在为绝热压缩空气储能系统在制冷方面的应用提供一条新的思路,为夏季大规模供冷提供新的方法。

关键词: 绝热压缩空气储能, 三联产, 引射器, 冷气供应

Abstract:

The adiabatic compressed air energy storage (A-CAES) system can realize the triple cooling, heating, and electricity supply. If the designed A-CAES system can supply matched cooling and replace the user's refrigeration equipment in the residential area community, the deducted investment of air conditioning equipment can be used to offset part of the energy storage system investment. Therefore, this shortens the static payback period of the energy storage system. In addition, off-peak power consumption can reduce the consumption of peak power resources by large-scale cooling equipment in the summer. In this research, an adiabatic compressed air energy storage system was constructed with a 5000 m3 tank volume and a 4.6—10.0 MPa tank storage pressure range. The system's cooling capacity was supplied to the user in the form of cold air produced by the ejector. The charging and discharging periods were simulated to analyze the energy output characteristics. The system configuration and operating parameters were analyzed and determined to maximize the cooling capacity in the cooling season and the electricity generation in the non-cooling season. The research results showed that the maximum cooling capacity of the system in the cooling season was 36.96 GJ, supplying 190 households. Compared with the compressed air energy storage trigeneration system to maximize economic benefits, the cooling capacity was increased by 287.76%. Regulating the preheating hot water flow could change the energy output ratio of the system to make the system match the changing energy needs of users. Under the maximum cooling condition, the recovery cycle of the system was 12.39 years. The system constructed in this paper aims to provide a new idea for applying an adiabatic compressed air energy storage system in refrigeration and a new method for large-scale cooling in summer.

Key words: adiabatic compressed air energy storage system, trigeneration, ejectors, cold air supply

中图分类号: