1 |
QIU B, ZHANG M H, XIA Y G, et al. Understanding and controlling anionic electrochemical activity in high-capacity oxides for next generation Li-ion batteries[J]. Chemistry of Materials, 2017, 29(3): 908-915.
|
2 |
THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30): 3112-3125.
|
3 |
YU H J, ISHIKAWA R, SO Y G, et al. Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2013, 52(23): 5969-5973.
|
4 |
LEE G H, LAU V W H, YANG W L, et al. Utilizing oxygen redox in layered cathode materials from multiscale perspective[J]. Advanced Energy Materials, 2021, 11(27): 2003227.
|
5 |
LI X, GU Q W, QIU B, et al. Rational design of thermally stable polymorphic layered cathode materials for next generation lithium rechargeable batteries[J]. Materials Today, 2022, 61: 91-103.
|
6 |
YIN C, WEI Z N, ZHANG M H, et al. Structural insights into composition design of Li-rich layered cathode materials for high-energy rechargeable battery[J]. Materials Today, 2021, 51: 15-26.
|
7 |
YIN C, WAN L Y, QIU B, et al. Boosting energy efficiency of Li-rich layered oxide cathodes by tuning oxygen redox kinetics and reversibility[J]. Energy Storage Materials, 2021, 35: 388-399.
|
8 |
GONG Y, LI X A, ZENG L C, et al. Tuning local structural configurations to improve oxygen-redox reversibility of Li-rich layered oxides[J]. The Journal of Physical Chemistry Letters, 2023, 14(19): 4575-4582.
|
9 |
ZHANG Y B, YIN C, QIU B, et al. Revealing Li-ion diffusion kinetic limitations in micron-sized Li-rich layered oxides[J]. Energy Storage Materials, 2022, 53: 763-773.
|
10 |
ZHANG Y B, WEN X H, SHI Z P, et al. Oxygen-defects evolution to stimulate continuous capacity increase in Co-free Li-rich layered oxides[J]. Journal of Energy Chemistry, 2023, 82: 259-267.
|
11 |
WEN X H, YIN C, QIU B, et al. Controls of oxygen-partial pressure to accelerate the electrochemical activation in Co-free Li-rich layered oxide cathodes[J]. Journal of Power Sources, 2022, 523: 231022.
|
12 |
WEN X H, QIU B, GAO H, et al. Synergistic effects of Ni2+ and Mn3+ on the electrochemical activation of Li2MnO3 in co-free and Ni-poor Li-rich layered cathodes[J]. ACS Applied Energy Materials, 2022, 5(7): 9079-9089.
|
13 |
LI T T, SHI Z P, LI L, et al. Non-eutectic-salt reaction route towards morphological and structural rearrangement of Li-rich layered oxides for high-volumetric Li-ion batteries[J]. Chemical Engineering Journal, 2023, 474: 145728.
|
14 |
LIU S Y, ZHOU Y H, ZHANG Y B, et al. Surface yttrium-doping induced by element segregation to suppress oxygen release in Li-rich layered oxide cathodes[J]. Tungsten, 2022, 4(4): 336-345.
|
15 |
YIN C, WEN X H, WAN L Y, et al. Surface reinforcement doping to suppress oxygen release of Li-rich layered oxides[J]. Journal of Power Sources, 2021, 503: 230048.
|
16 |
QIU B, ZHANG M H, WU L J, et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries[J]. Nature Communications, 2016, 7: 12108.
|
17 |
SHI Z P, GU Q W, YUN L, et al. A composite surface configuration towards improving cycling stability of Li-rich layered oxide materials[J]. Journal of Materials Chemistry A, 2021, 9(43): 24426-24437.
|
18 |
LI Y, SHI Z P, QIU B, et al. Optimizing both bulk and surface structure of Li-rich layered cathodes for long-life and safe Li-ion batteries[J]. Advanced Functional Materials, 2023, 33(41): 2302236.
|
19 |
ZENG L C, LIANG H Y, QIU B, et al. Voltage decay of Li-rich layered oxides: Mechanism, modification strategies, and perspectives[J]. Advanced Functional Materials, 2023, 33(25): 2213260.
|
20 |
QIU B, ZHANG M H, LEE S Y, et al. Metastability and reversibility of anionic redox-based cathode for high-energy rechargeable batteries[J]. Cell Reports Physical Science, 2020, 1(3): 100028.
|
21 |
ZHANG M H, QIU B, GALLARDO-AMORES J M, et al. High pressure effect on structural and electrochemical properties of anionic redox-based lithium transition metal oxides[J]. Matter, 2021, 4(1): 164-181.
|
22 |
JIANG W, YIN C, XIA Y G, et al. Understanding the discrepancy of defect kinetics on anionic redox in lithium-rich cathode oxides[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14023-14034.
|
23 |
GUO H C, WEI Z, JIA K, et al. Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials[J]. Energy Storage Materials, 2019, 16: 220-227.
|
24 |
ZHOU Y H, CUI H F, QIU B, et al. Sufficient oxygen redox activation against voltage decay in Li-rich layered oxide cathode materials[J]. ACS Materials Letters, 2021, 3(4): 433-441.
|
25 |
ZHAO J L, SHI Z, HE Z, et al. Optimizing the potential of intercalation on anode for long-cycle 420 Wh/kg Li-ion batteries[J]. Journal of Power Sources 2023, 580: 233393.
|
26 |
WEI Z N, SHI Z P, WEN X H, et al. Eliminating oxygen releasing of Li-rich layered cathodes by tuning the distribution of superlattice domain[J]. Materials Today Energy, 2022, 27: 101039.
|
27 |
MCCOLL K, HOUSE R A, REES G J, et al. Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes[J]. Nature Communications, 2022, 13: 5275.
|
28 |
LI M, LU J. Cobalt in lithium-ion batteries[J]. Science, 2020, 367(6481): 979-980.
|
29 |
PAULING L. The principles determining the structure of complex ionic crystals[J]. Journal of the American Chemical Society, 1929, 51(4): 1010-1026.
|
30 |
QIU B, QIAO Y, LI B, et al. Next-generation cathode materials for ultrahigh-energy batteries[J]. Next Materials, 2023, 1(3): 100034.
|