储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 240-251.doi: 10.19799/j.cnki.2095-4239.2023.0737

• 高比能二次电池关键材料与先进表征专刊 • 上一篇    下一篇

富锂层状氧化物正极材料“可逆高氧活性”的研究进展

方泽平1,2(), 邱报1,2(), 刘兆平1,2()   

  1. 1.中国科学院宁波材料技术与工程研究所,浙江 宁波 310521
    2.中国科学院大学化学科学学院,北京 100049
  • 收稿日期:2023-10-08 修回日期:2023-11-13 出版日期:2024-01-05 发布日期:2024-01-22
  • 通讯作者: 邱报,刘兆平 E-mail:fangzeping@nimte.ac.cn;qiubao@nimte.ac.cn;liuzp@nimte.ac.cn
  • 作者简介:方泽平(1998—),女,硕士研究生,研究方向为锂离子电池富锂锰基层状氧化物材料研究,E-mail:fangzeping@nimte.ac.cn
  • 基金资助:
    国家自然科学基金(52272253);浙江省“领雁”计划(2022C01071);中国科学院青年创新促进会(2022299)

Progress of "reversible high-oxygen activity" of lithium-rich layered oxide anode materials

Zeping FANG1,2(), Bao QIU1,2(), Zhaoping LIU1,2()   

  1. 1.Ningbo Institute of Industrial Technology, Chinese Academic of Science, Ningbo 310521, Zhejiang, China
    2.School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-10-08 Revised:2023-11-13 Online:2024-01-05 Published:2024-01-22
  • Contact: Bao QIU, Zhaoping LIU E-mail:fangzeping@nimte.ac.cn;qiubao@nimte.ac.cn;liuzp@nimte.ac.cn

摘要:

在当前已知的锂离子电池正极材料中,富锂层状氧化物的放电比容量高出传统正极材料将近一倍,因而被认为是开发新一代高能量密度电池的理想材料。它一般由Li2MnO3和LiTMO2在纳米尺度上形成两种层状结构或固溶体,其充放电反应机制包括过渡金属活性和晶格氧活性,发挥可逆高氧活性直接决定着材料的放电比容量、循环稳定性等问题,材料的化学组成、微观结构、合成加工等关键因素直接控制着高氧活性的可逆性。本文详细地介绍了中国科学院宁波材料所近几年围绕富锂层状氧化物“可逆高氧活性”的研究进展。首先揭示了富锂锰基层状氧化物中不同元素氧框架结构基元的存在形式对氧活性的作用规律,其次探讨了不同维度的颗粒尺寸和晶畴尺寸对氧活性的影响机制,再次发展了优化体相结构及表面改性对氧活性的稳定性策略和提出了构筑体相无序结构抑制电压衰减的方法,最后探索构建了高比能富锂锰基电池新体系。这些研究结果为低成本、高容量富锂层状氧化物正极材料的设计制备和实际应用提供了理论支撑和方法指导。

关键词: 富锂层状氧化物, 可逆高氧活性, 含钴富锂相, 晶畴尺寸, 表面改性, 电压衰减

Abstract:

As novel cathode materials, Li-rich layered oxides exhibit a discharge capacity nearly double that of conventional cathode materials. Consequently, they are considered promising for the development of next-generation high-energy-density batteries. Typically, they comprise Li2MnO3 and LiTMO2, forming two types of layered structures or solid solutions. The reaction mechanism involves both transition-metal activity and lattice oxygen-redox activity. Importantly, the reversibility of high-oxygen activity directly determines discharge capacity, cycling stability, and other factors. Key elements such as chemical compositions, microstructures, and synthesis and processing directly control the reversibility of high-oxygen activity. In this review, the recent research progress of reversible oxygen-redox activity in Li-rich layered oxides by the Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, is introduced in detail. First, it reveals the role of different elements in the oxygen framework structure of Li-rich layered oxides on oxygen activity. Second, it explores the influence of different particle and domain size on oxygen-redox activity. Then, it develops the optimization of bulk structure and surface modification on the stability of oxygen activity. It proposes constructing a disordered bulk structure to inhibit voltage decay. Finally, a new battery system was constructed with high specific energy and a long cycle life. These results provide theoretical support and methodological guidance for designing and synthesizing low-cost, high-capacity Li-rich layered cathode materials for practical applications.

Key words: Li-rich layered oxides, reversible high oxygen redox, Co-contained Li-rich phase, domain size, surface modification, voltage decay

中图分类号: