储能科学与技术 ›› 2024, Vol. 13 ›› Issue (10): 3693-3705.doi: 10.19799/j.cnki.2095-4239.2024.0250
张成凤1,2(), 朱轶林2, 胡东子1,2, 富征阳3, 徐玉杰2(), 沈国清1(), 王亮2, 陈海生2
收稿日期:
2024-03-22
修回日期:
2024-04-12
出版日期:
2024-10-28
发布日期:
2024-10-30
通讯作者:
徐玉杰,沈国清
E-mail:120212202361@ncepu.edu.cn;xuyujie@iet.cn;shenguoqing@ncepu.edu.cn
作者简介:
张成凤(1998—),女,硕士研究生,主要研究方向为火电-储热耦合系统深度调峰,E-mail:120212202361@ncepu.edu.cn;
基金资助:
Chengfeng ZHANG1,2(), Yilin ZHU2, Dongzi HU1,2, Zhengyang FU3, Yujie XU2(), Guoqing SHEN1(), Liang WANG2, Haisheng CHEN2
Received:
2024-03-22
Revised:
2024-04-12
Online:
2024-10-28
Published:
2024-10-30
Contact:
Yujie XU, Guoqing SHEN
E-mail:120212202361@ncepu.edu.cn;xuyujie@iet.cn;shenguoqing@ncepu.edu.cn
摘要:
火电机组耦合储热技术,可提高机组的热电解耦能力,减少深度调峰对系统安全性和经济性的影响。本工作提出了火电机组与填充床储热的耦合系统,在考虑了机组变工况、填充床储/释热过程动态时间序列基础上,通过EBSILON建立了耦合系统变工况仿真模型;分析深度调峰对耦合系统热力性和碳排放量的影响,通过汽水分离器筒体应力变化分析深调对锅炉寿命损耗的影响,通过转子寿命损耗率曲线分析深调对汽轮机寿命的影响,最终建立耦合系统调度运行经济性模型,开展综合经济性分析。结果表明:火-储耦合系统比自身变工况减小碳排放量7418 t/a(仅配置风电)~9216 t/a(仅配置光伏);深度调峰对锅炉寿命损耗的影响大于汽轮机,火-储耦合系统可提高系统运行寿命,深度调峰318次/年,相比于机组自身变工况(30%~20%额定负荷)可提高13.3%~15.3%;火-储耦合系统深度调峰收益高于火电机组自身变工况,当填充床释热量用于发电或供热时,耦合系统比自身变工况收益分别增加40万元/年、72万元/年。
中图分类号:
张成凤, 朱轶林, 胡东子, 富征阳, 徐玉杰, 沈国清, 王亮, 陈海生. 火-储耦合系统深度调峰综合经济性分析[J]. 储能科学与技术, 2024, 13(10): 3693-3705.
Chengfeng ZHANG, Yilin ZHU, Dongzi HU, Zhengyang FU, Yujie XU, Guoqing SHEN, Liang WANG, Haisheng CHEN. Comprehensive economic analysis of deep peak shaving in thermal power-heat storage coupling systems[J]. Energy Storage Science and Technology, 2024, 13(10): 3693-3705.
表13
火-储耦合系统与火电自身变工况深调时经济性对比"
机组运行工况 | 机组自身变工况 | 火-储耦合系统 | ||||
---|---|---|---|---|---|---|
20% 额定负荷 | 30% 额定负荷 | 100% 额定负荷 | 20% 额定负荷 | 100%额定负荷 (释热1) | 100%额定负荷 (释热2) | |
燃煤成本/元 | 16444 | 23574 | 69806 | 23574 | 69806 | 69806 |
调峰成本/元 | 6800 | 859 | 78 | 859 | 78 | 78 |
运维成本/元 | 3605 | 3605 | 3181 | 3694 | 3259 | 3259 |
折旧成本/元 | 10299 | 9088 | 8780/9950 | 10090 | 8903 | 8903 |
碳收益/元 | 165 | 306 | 399 | 306 | 399 | 399 |
深调补偿/元 | 47600~89250 | 17850~47600 | 0 | 47600~89250 | 0 | 0 |
售电收益/元 | 26954 | 40430 | 118913 | 26954 | 121291 | 118913 |
售热收益/元 | 0 | 0 | 0 | 0 | 0 | 3393 |
总收益/元 | 37571~79221 | 21460~51210 | 37467/36297 | 36643~78293 | 39644 | 40659 |
1 | 喻心, 王德林, 孙超, 等. 不同调峰深度下火电机组的环境经济调度优化[J]. 太阳能学报, 2023, 44(6): 152-160. DOI: 10.19912/j.0254-0096.tynxb.2022-0258. |
YU X, WANG D L, SUN C, et al. Environmental economic dispatch optimization of thermal power units at different peak-load regulation depths[J]. Acta Energiae Solaris Sinica, 2023, 44(6): 152-160. DOI: 10.19912/j.0254-0096.tynxb.2022-0258. | |
2 | 邹小刚, 刘明, 肖海丰, 等. 火电机组耦合熔盐储热深度调峰系统设计及性能分析[J]. 热力发电, 2023, 52(2): 146-153. DOI: 10.19666/j.rlfd.202209188. |
ZOU X G, LIU M, XIAO H F, et al. Design and performance analysis of deep peak shaving system of thermal power units coupled with molten salt heat storage[J]. Thermal Power Generation, 2023, 52(2): 146-153. DOI: 10.19666/j.rlfd. 202209188. | |
3 | 牟春华, 居文平, 黄嘉驷, 等. 火电机组灵活性运行技术综述与展望[J]. 热力发电, 2018, 47(5): 1-7. DOI: 10.19666/j.rlfd.201802048. |
MU C H, JU W P, HUANG J S, et al. Review and prospect of technologies of enhancing the flexibility of thermal power units[J]. Thermal Power Generation, 2018, 47(5): 1-7. DOI: 10.19666/j.rlfd.201802048. | |
4 | 陈晓利, 高继录, 郑飞, 等. 多种深度调峰模式对火电机组性能影响分析[J]. 热能动力工程, 2020, 35(12): 26-30. DOI: 10.16146/j.cnki.rndlgc.2020.12.004. |
CHEN X L, GAO J L, ZHENG F, et al. Comparative analysis of various deep peak regulation modes for thermal power units[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(12): 26-30. DOI: 10.16146/j.cnki.rndlgc.2020.12.004. | |
5 | 段立强, 王婧, 庞力平, 等. 二次再热机组高效灵活发电创新理论与方法[J]. 中国电力, 2019, 52(5): 1-12. DOI: 10.11930/j.issn.1004-9649.201903075. |
DUAN L Q, WANG J, PANG L P, et al. Innovative theory and methods for high-efficiency and flexible power generation of ultra-supercritical double-reheat coal-fired power generation unit[J]. Electric Power, 2019, 52(5): 1-12. DOI: 10.11930/j.issn.1004-9649.201903075. | |
6 | 周科, 李银龙, 李明皓, 等. 燃煤发电-物理储热耦合技术研究进展与系统调峰能力分析[J]. 洁净煤技术, 2022, 28(3): 159-172. DOI: 10.13226/j.issn.1006-6772.CC22010501. |
ZHOU K, LI Y L, LI M H, et al. Research progress on the coupling technology of coal-fired power generation-physical thermal storage and analysis for the system peaking capacity[J]. Clean Coal Technology, 2022, 28(3): 159-172. DOI: 10.13226/j.issn.1006-6772.CC22010501. | |
7 | LIN L, WANG L, LIN X P, et al. Experimental investigation on the distribution uniformity and pressure drop of perforated plate distributors for the innovative spray-type packed bed thermal storage[J]. Particuology, 2022, 61: 60-73. DOI: 10.1016/j.partic.2021.05.003. |
8 | XIE N N, WANG L, WANG Y F, et al. Spray-type packed bed concept for thermal energy storage: Liquid holdup and energy storage characteristics[J]. Applied Thermal Engineering, 2019, 160: 114082. DOI: 10.1016/j.applthermaleng.2019.114082. |
9 | 李军徽, 张嘉辉, 穆钢, 等. 储能辅助火电机组深度调峰的分层优化调度[J]. 电网技术, 2019, 43(11): 3961-3970. DOI: 10.13335/j.1000-3673.pst.2019.1368. |
LI J H, ZHANG J H, MU G, et al. Hierarchical optimization scheduling of deep peak shaving for energy-storage auxiliary thermal power generating units[J]. Power System Technology, 2019, 43(11): 3961-3970. DOI: 10.13335/j.1000-3673.pst. 2019.1368. | |
10 | 柴有国, 何晓燕, 苏永健, 等. 考虑安全环保及补偿的火电机组调峰经济性研究[J]. 中国电力, 2021, 54(11): 199-205. DOI: 10.11930/j.issn.1004-9649.202010096. |
CHAI Y G, HE X Y, SU Y J, et al. Economic research on peak shaving of thermal power units considering safety-environmental protection and compensation[J]. Electric Power, 2021, 54(11): 199-205. DOI: 10.11930/j.issn.1004-9649.202010096. | |
11 | GUAN H, FENG Y H, YANG X G, et al. Optimization strategy of combined thermal-storage-photovoltaic economic operation considering deep peak load regulation demand[J]. Energy Reports, 2022, 8: 112-120. DOI: 10.1016/j.egyr.2022.03.050. |
12 | 陈宇, 应光耀, 包劲松, 等. 浙江省燃煤机组深度调峰汽轮机设备影响分析[J]. 浙江电力, 2019, 38(10): 100-105. DOI: 10.19585/j.zjdl.201910017. |
CHEN Y, YING G Y, BAO J S, et al. Analysis of the influence on steam turbine at deep peak regulation operation in Zhejiang Province[J]. Zhejiang Electric Power, 2019, 38(10): 100-105. DOI: 10.19585/j.zjdl.201910017. | |
13 | 尹连庆, 张山山, 李长鸣. 水工况对超(超)临界锅炉氧化皮形成的影响[J]. 电力建设, 2012, 33(7): 62-65. DOI: 10.3969/j.issn.1000-7229.2012.07.015. |
YIN L Q, ZHANG S S, LI C M. Impact of water conditions on forming mechanism of oxide skin in (ultra) supercritical boiler[J]. Electric Power Construction, 2012, 33(7): 62-65. DOI: 10.3969/j.issn.1000-7229.2012.07.015. | |
14 | 吴瑞康, 华敏, 秦攀, 等. 燃煤机组深度调峰对汽轮机设备的影响[J]. 热力发电, 2018, 47(5): 89-94. DOI: 10.19666/j.rlfd.201802028. |
WU R K, HUA M, QIN P, et al. Influence of deep peak load regulation of coal-fired units on turbine equipment[J]. Thermal Power Generation, 2018, 47(5): 89-94. DOI: 10.19666/j.rlfd.201802028. | |
15 | 林俐, 邹兰青, 周鹏, 等. 规模风电并网条件下火电机组深度调峰的多角度经济性分析[J]. 电力系统自动化, 2017, 41(7): 21-27. |
LIN L, ZOU L Q, ZHOU P, et al. Multi-angle economic analysis on deep peak regulation of thermal power units with large-scale wind power integration[J]. Automation of Electric Power Systems, 2017, 41(7): 21-27. | |
16 | 华敏, 董益华, 项群扬, 等. 超临界660 MW燃煤机组深度调峰试验研究[J]. 电站系统工程, 2019, 35(5): 35-36, 40. |
HUA M, DONG Y H, XIANG Q Y, et al. Research on deep load regulation of 660 MW supercritical coal-fired units[J]. Power System Engineering, 2019, 35(5): 35-36, 40. | |
17 | 李军, 张扬. 影响锅炉汽包低周疲劳寿命的因素分析[J]. 动力工程学报, 2018, 38(12): 965-971. DOI: 10.3969/j.issn.1674-7607. 2018.12.003. |
LI J, ZHANG Y. Analysis on factors influencing the low-cycle fatigue life of a boiler drum[J]. Journal of Chinese Society of Power Engineering, 2018, 38(12): 965-971. DOI: 10.3969/j.issn.1674-7607.2018.12.003. | |
18 | 袁荣胜, 俞聪, 刘明, 等. 燃煤机组调峰运行的碳经济性分析[J]. 动力工程学报, 2022, 42(11): 1033-1041. DOI: 10.19805/j.cnki.jcspe.2022.11.005. |
YUAN R S, YU C, LIU M, et al. Carbon economic analysis of peak shaving operation of coal-fired unit[J]. Journal of Chinese Society of Power Engineering, 2022, 42(11): 1033-1041. DOI: 10.19805/j.cnki.jcspe.2022.11.005. | |
19 | 任鑫, 王渡, 金亚飞, 等. 基于能耗、经济性及碳排放的热电联产机组运行优化[J]. 中国电力, 2023, 56(4): 201-210. DOI: 10.11930/j.issn.1004-9649.202211071. |
REN X, WANG D, JIN Y F, et al. Operation optimization of combined heat and power units based on energy consumption, economy and carbon emission[J]. Electric Power, 2023, 56(4): 201-210. DOI: 10.11930/j.issn.1004-9649.202211071. | |
20 | 盖志杰, 王鹏辉. 燃煤电厂碳排放典型计算及分析[J]. 中国电力, 2017, 50(5): 178-184. DOI: 10.11930/j.issn.1004-9649. 2017.05.178.07. |
GAI Z J, WANG P H. A typical calculation and analysis of carbon emissions from coal-fired power plants[J]. Electric Power, 2017, 50(5): 178-184. DOI: 10.11930/j.issn.1004-9649.2017.05.178.07. | |
21 | 赵玉冰. 超(超)临界锅炉汽水分离器寿命损耗在线监测系统的开发[D]. 北京: 华北电力大学, 2012. |
ZHAO Y B. Development of on-line monitoring system for life loss of steam-water separator in supercritical boiler[D]. Beijing: North China Electric Power University, 2012. | |
22 | 邹兰青. 规模风电并网条件下火电机组深度调峰多角度经济性分析[D]. 北京: 华北电力大学, 2017. |
ZOU L Q. Multi-angle economic analysis of deep peak shaving of thermal power units under the condition of large-scale wind power grid connection[D]. Beijing: North China Electric Power University, 2017. | |
23 | 董思奇. XY热电厂2×350MW建设项目投资经济效益评价[D]. 长春: 吉林大学, 2015. |
DONG S Q. Evaluation of investment economic benefit of 2 × 350 MW construction project in XY thermal power plant[D]. Changchun: Jilin University, 2015. | |
24 | 张显荣, 徐玉杰, 杨立军, 等. 多类型火电-储热耦合系统性能分析与比较[J]. 储能科学与技术, 2021, 10(5): 1565-1578. DOI: 10.19799/j.cnki.2095-4239.2021.0347. |
ZHANG X R, XU Y J, YANG L J, et al. Performance analysis and comparison of multi-type thermal power-heat storage coupling systems[J]. Energy Storage Science and Technology, 2021, 10(5): 1565-1578. DOI: 10.19799/j.cnki.2095-4239.2021.0347. | |
25 | 林俐, 田欣雨. 基于火电机组分级深度调峰的电力系统经济调度及效益分析[J]. 电网技术, 2017, 41(7): 2255-2263. DOI: 10.13335/j.1000-3673.pst.2016.2720. |
LIN L, TIAN X Y. Analysis of deep peak regulation and its benefit of thermal units in power system with large scale wind power integrated[J]. Power System Technology, 2017, 41(7): 2255-2263. DOI: 10.13335/j.1000-3673.pst.2016.2720. | |
26 | 彭元, 娄素华, 范越, 等. 考虑火电机组储热改造的电力系统低碳经济调度[J]. 电网技术, 2020, 44(9): 3339-3345. DOI: 10.13335/j.1000-3673.pst.2020.0088. |
PENG Y, LOU S H, FAN Y, et al. Low-carbon economical dispatch of power system considering thermal energy storage in thermal power units[J]. Power System Technology, 2020, 44(9): 3339-3345. DOI: 10.13335/j.1000-3673.pst.2020.0088. |
[1] | 刘云汉, 王亮, 张双, 林曦鹏, 葛志伟, 白亚开, 林霖, 王艺斐, 陈海生. 基于圆柱封装单元的水合盐相变储热填充床的储释特性实验研究[J]. 储能科学与技术, 2024, 13(8): 2623-2633. |
[2] | 葛群, 梁涛, 侯彬, 王万红, 张龙, 吴梁玉, 张程宾, 刘向东. 植物工厂储热装置性能强化研究[J]. 储能科学与技术, 2024, 13(8): 2687-2695. |
[3] | 凡烈, 邢永杰, 刘芳, 熊亚选. 储热系统优化对延庆冬奥村供暖经济性的影响[J]. 储能科学与技术, 2024, 13(6): 2057-2067. |
[4] | 赵添辰, 张弓, 张云飞, 侯世豪, 王婷婷. “双碳”目标下抽水蓄能提升系统保供能力的技术经济性研究[J]. 储能科学与技术, 2024, 13(3): 1059-1073. |
[5] | 张雪丽, 孙伟清, 郑君华. 聚氨酯型固-固相变储能材料对沥青调温效果的影响研究[J]. 储能科学与技术, 2024, 13(3): 841-843. |
[6] | 王运, 蒙飞, 张超, 李涛, 田波, 李江鹏, 陈海东, 张志华. 氨分解制氢储能系统容量对电力系统性能的影响[J]. 储能科学与技术, 2024, 13(2): 589-597. |
[7] | 俞金翔, 王一波, 国建鸿, 张晓宇. 基于分时电价的热泵供热系统相变储热应用研究[J]. 储能科学与技术, 2024, 13(2): 669-676. |
[8] | 熊亚选, 尹心成, 宋超宇, 任静, 张灿灿, 吴玉庭, 丁玉龙. 污泥焚烧炉渣/硝酸钾复合相变储热材料制备及性能[J]. 储能科学与技术, 2024, 13(10): 3357-3368. |
[9] | 王海岚, 张晓宇, 国建鸿, 赵勇, 陈卓, 王一波. 基于中低温相变材料的管壳式储热单元传热性能数值分析[J]. 储能科学与技术, 2024, 13(10): 3376-3387. |
[10] | 孛衍君, 薛新杰, 王化宁, 赵长颖. 基于相变堆积床的卡诺电池系统设计与实验研究[J]. 储能科学与技术, 2023, 12(9): 2823-2832. |
[11] | 张雪龄, 叶强, 谷军恒, 荀浩云, 张琦, 程传晓, 金听祥, 张业强. MgSO4-LiCl@MEG复合储热材料的制备与吸附储热性能[J]. 储能科学与技术, 2023, 12(9): 2778-2788. |
[12] | 尹航, 汤建方, 张继, 颜豪, 胡晓睿, 王澍. 电力现货市场中新能源-光热联合发电系统的储热系统容量优化配置[J]. 储能科学与技术, 2023, 12(9): 2842-2853. |
[13] | 胡茜芮, 张朝阳, 洪芳军. 高温相变胶囊梯级储热系统实验研究[J]. 储能科学与技术, 2023, 12(8): 2526-2535. |
[14] | 洪睿洁, 顾丹珍, 莫阮清, 蔡思楠, 张超林. 基于用户偏好的电动汽车储能V2G策略优化[J]. 储能科学与技术, 2023, 12(8): 2659-2667. |
[15] | 康小平, 聂慧慧, 郜敏, 吴凤彪. 电动汽车全生命周期碳排放[J]. 储能科学与技术, 2023, 12(3): 976-984. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||