储能科学与技术 ›› 2024, Vol. 13 ›› Issue (10): 3504-3514.doi: 10.19799/j.cnki.2095-4239.2024.0272

• 储能系统与工程 • 上一篇    下一篇

高镍/碳硅三元锂离子电池循环老化机理研究

胡文豪1(), 赵晨曦1, 孙卓尔1,2, 张沛1,3, 王学辉1, 汪箭1()   

  1. 1.中国科学技术大学火灾科学国家重点实验室,安徽 合肥 230026
    2.杭州市消防救援支队,浙江 杭州 310016
    3.航空工业第一飞机设计研究院机电系统研究所,陕西 西安 710089
  • 收稿日期:2024-03-28 修回日期:2024-05-05 出版日期:2024-10-28 发布日期:2024-10-30
  • 通讯作者: 汪箭 E-mail:whhu@mail.ustc.edu.cn;wangj@ustc.edu.cn
  • 作者简介:胡文豪(1998—),男,硕士研究生,研究方向为三元锂离子电池老化机理与热失控特性,E-mail:whhu@mail.ustc.edu.cn
  • 基金资助:
    应急管理部消防救援局重点研发计划项目(2022XFZD12);广东省应用基础研究基金(2021B1515130008);国家重点研发计划项目(2022YFC3006300)

Study on the cyclic aging mechanism of nickel-rich silicon-graphite lithium-ion cells

Wenhao HU1(), Chenxi ZHAO1, Zhuo'er SUN1,2, Pei ZHANG1,3, Xuehui WANG1, Jian WANG1()   

  1. 1.State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui, China
    2.Hangzhou Fire and Rescue Division, Hangzhou 310016, Zhejiang, China
    3.Electromechanical System Research Department, AVIC the First Aircraft Institute, Xi'an 710089, Shaanxi, China
  • Received:2024-03-28 Revised:2024-05-05 Online:2024-10-28 Published:2024-10-30
  • Contact: Jian WANG E-mail:whhu@mail.ustc.edu.cn;wangj@ustc.edu.cn

摘要:

高镍锂离子电池具有能量密度大、功率密度大等特征,目前得到了广泛使用,但是老化造成的电池容量损失一直是制约高镍锂离子电池高效利用的问题。本工作对高镍/碳硅锂离子电池的老化机理进行了研究,开展了高镍/碳硅型锂离子电池循环老化实验,利用无损和有损测试全面分析了不同寿命阶段的高镍/碳硅三元锂离子电池老化模式并进行验证。分析结果表明,锂离子电池容量衰减呈现两个阶段;第一阶段电池容量呈线性损失,容量损失主要由锂离子的损失导致,老化主要机理是SEI膜的生长和负极材料的损失;第二阶段电池容量骤降,容量损失主要由锂离子损失和电导率损失共同导致,老化主要机理是正极材料的溶解与正极晶体的不可逆性改变和电池隔膜的堵塞;通过计算机断层扫描分析不同寿命阶段锂离子电池整体形貌表明电池生产过程中的初始影响对电池老化部位影响明显,XPS测试结果表明正负极表面钝化层在整个锂离子电池循环实验中不断增厚,且负极材料表面存在过渡金属Ni的沉积,极大地影响了电池的储能能力。本工作揭示了高镍/碳硅锂离子电池老化特性和机理,对高镍/碳硅锂离子电池的梯级利用具有重要理论指导意义。

关键词: 高镍/碳硅三元锂电池, 电池容量损失, 电化学特性, 形貌特征, 老化机理

Abstract:

High nickel lithium-ion batteries offer high energy density and power density, making them widely used today. However, capacity loss due to aging remains a challenge for their efficient utilization. This study investigates the aging mechanism of high-nickel lithium-ion batteries, conducting cyclic aging experiments on high-nickel/silicon carbon-based lithium batteries. The aging modes at different life stages of high-nickel ternary lithium-ion batteries are comprehensively analyzed and verified using both nondestructive and destructive tests. The results indicate that the capacity of Li-ion batteries decreases in two distinct stages. In the first stage, the capacity loss is linear, primarily due to the loss of lithium ions, with the main aging mechanisms being the growth of the SEI and the degradation of anode materials. In the second stage, the capacity decreases abruptly, driven by both the loss of lithium ions and a decline in electrical conductivity. The primary aging mechanisms during this stage include the dissolution of cathode materials, irreversible changes in cathode crystal structures, and the degradation of the battery separator. The main aging mechanisms include the dissolution of anode material, irreversible changes in anode crystal structure, and blockage of the battery separator. Computed tomography analysis of the overall morphology of lithium-ion batteries at different life stages reveals that the initial battery production process significantly impacts the areas where aging occurs. XPS test results indicate that the passivation layer on the surfaces of both the anode and cathode continues to thicken throughout the battery's cycling experiments. Additionally, the deposition of transition metal Ni on the surface of the cathode material is observed, which significantly affects the battery's energy storage capacity. This paper reveals the aging characteristics and mechanism of high-nickel lithium battery, offering valuable theoretical insights for the graded utilization of these batteries.

Key words: high-nickel ternary lithium battery, aging characteristics battery capacity loss, electrochemical characteristics, morphological characteristics, aging mechanism

中图分类号: