1 |
ZHANG Y X, LI K, LI Y F, et al. Decoupling pressure effects in plating and stripping of lithium metal anodes[J]. Journal of Energy Storage, 2023, 74: 109422. DOI: 10.1016/j.est.2023.109422.
|
2 |
XIE Y, LI W, SONG Z Y, et al. A health-aware AC heating strategy with lithium plating criterion for batteries at low temperatures[J]. IEEE Transactions on Industrial Informatics, 2024, 20(2): 2295-2306. DOI: 10.1109/TII.2023.3290186.
|
3 |
ZHANG G X, WEI X Z, HAN G S, et al. Lithium plating on the anode for lithium-ion batteries during long-term low temperature cycling[J]. Journal of Power Sources, 2021, 484: 229312. DOI: 10.1016/j.jpowsour.2020.229312.
|
4 |
SMITH A J, FANG Y, MIKHEENKOVA A, et al. Localized lithium plating under mild cycling conditions in high-energy lithium-ion batteries[J]. Journal of Power Sources, 2023, 573: 233118. DOI: 10.1016/j.jpowsour.2023.233118.
|
5 |
YOU H Z, JIANG B, ZHU J G, et al. In-situ quantitative detection of irreversible lithium plating within full-lifespan of lithium-ion batteries[J]. Journal of Power Sources, 2023, 564: 232892. DOI: 10.1016/j.jpowsour.2023.232892.
|
6 |
YOU H Z, WANG X Y, ZHU J G, et al. Investigation of lithium-ion battery nonlinear degradation by experiments and model-based simulation[J]. Energy Storage Materials, 2024, 65: 103083. DOI: 10.1016/j.ensm.2023.103083.
|
7 |
BAI M, LYU C, YANG D Z, et al. Quantification of lithium plating in lithium-ion batteries based on impedance spectrum and artificial neural network[J]. Batteries, 2023, 9(7): 350. DOI: 10.3390/batteries9070350.
|
8 |
LAFORGUE A, YUAN X Z, PLATT A, et al. Effects of fast charging at low temperature on a high energy Li-ion battery[J]. Journal of the Electrochemical Society, 2020, 167(14): 140521. DOI: 10.1149/1945-7111/abc4bc.
|
9 |
SARKAR A, SHROTRIYA P, NLEBEDIM I C. Parametric analysis of anodic degradation mechanisms for fast charging lithium batteries with graphite anode[J]. Computational Materials Science, 2022, 202: 110979. DOI: 10.1016/j.commatsci.2021.110979.
|
10 |
PERUMARAM RANGARAJAN S, BARSUKOV Y, MUKHERJEE P P. Plating energy as a universal descriptor to classify accelerated cell failure under operational extremes[J]. Cell Reports Physical Science, 2022, 3(1): 100720. DOI: 10.1016/j.xcrp.2021.100720.
|
11 |
PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery-A low-temperature aging study[J]. Journal of Power Sources, 2015, 275: 799-807. DOI: 10.1016/j.jpowsour.2014.11.065.
|
12 |
TIAN Y, LIN C, CHEN X, et al. Reversible lithium plating on working anodes enhances fast charging capability in low-temperature lithium-ion batteries[J]. Energy Storage Materials, 2023, 56: 412-423. DOI: 10.1016/j.ensm.2023.01.035.
|
13 |
MATADI B P, GENIÈS S, DELAILLE A, et al. Irreversible capacity loss of Li-ion batteries cycled at low temperature due to an untypical layer hindering Li diffusion into graphite electrode[J]. Journal of the Electrochemical Society, 2017, 164(12): A2374-A2389. DOI: 10.1149/2.0491712jes.
|
14 |
BROWN D E, MCSHANE E J, KONZ Z M, et al. Detecting onset of lithium plating during fast charging of Li-ion batteries using operando electrochemical impedance spectroscopy[J]. Cell Reports Physical Science, 2021, 2(10): 100589. DOI: 10.1016/j.xcrp.2021.100589.
|
15 |
LIU J L, ZHANG Y, BAI J L, et al. Influence of lithium plating on lithium-ion battery aging at high temperature[J]. Electrochimica Acta, 2023, 454: 142362. DOI: 10.1016/j.electacta.2023.142362.
|
16 |
JUAREZ-ROBLES D, VYAS A A, FEAR C, et al. Overcharge and aging analytics of Li-ion cells[J]. Journal of the Electrochemical Society, 2020, 167(9): 090547. DOI: 10.1149/1945-7111/ab9569.
|
17 |
PETZL M, DANZER M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries[J]. Journal of Power Sources, 2014, 254: 80-87. DOI: 10.1016/j.jpowsour.2013.12.060.
|
18 |
SUN K, LI X Y, ZHANG Z J, et al. Pattern investigation and quantitative analysis of lithium plating under subzero operation of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(30): 36356-36365. DOI: 10.1021/acsami.3c07098.
|
19 |
VERMA P, MAIRE P, NOVÁK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341. DOI: 10.1016/j.electacta.2010.05.072.
|
20 |
梁宏毅, 黎华玲, 甘友毅, 等. 三元动力锂离子电池低温容量失效分析[J]. 电池, 2024, 54(2): 185-188. DOI: 10.19535/j.1001-1579. 2024.02.009.
|
|
LIANG H Y, LI H L, GAN Y Y, et al. Failure analysis of low-temperature capacity of ternary power Li-ion battery[J]. Battery Bimonthly, 2024, 54(2): 185-188. DOI: 10.19535/j.1001-1579.2024.02.009.
|
21 |
ZHENG Y, HE Y B, QIAN K, et al. Influence of charge rate on the cycling degradation of LiFePO4/mesocarbon microbead batteries under low temperature[J]. Ionics, 2017, 23(8): 1967-1978. DOI: 10.1007/s11581-017-2032-y.
|