储能科学与技术 ›› 2025, Vol. 14 ›› Issue (1): 162-171.doi: 10.19799/j.cnki.2095-4239.2024.0762

• 储能系统与工程 • 上一篇    下一篇

基于CMMOPSO算法的构网型储能接入高比例新能源电网的优化配置

刘默斯(), 孙志媛(), 李今昭, 郑琨, 陈立春   

  1. 广西电网有限责任公司电力科学研究院,广西 南宁 530013
  • 收稿日期:2024-08-13 修回日期:2024-09-05 出版日期:2025-01-28 发布日期:2025-02-25
  • 通讯作者: 孙志媛 E-mail:liums@qq.com;77569646@qq.com
  • 作者简介:刘默斯(1986—),女,硕士,高级工程师,主要从事电力系统运行与控制研究工作,E-mail:liums@qq.com
  • 基金资助:
    广西电网公司科技项目(GXKJXM20230093)

Research on the optimal configuration of grid-forming energy storage connected to power systems with high proportional renewable energy based on CMMOPSO

Mosi LIU(), Zhiyuan SUN(), Jinzhao LI, Kun ZHENG, Lichun CHEN   

  1. Electric Power Research Institute, Guangxi Power Grid Co. , Ltd. , Nanning 530013, Guangxi, China
  • Received:2024-08-13 Revised:2024-09-05 Online:2025-01-28 Published:2025-02-25
  • Contact: Zhiyuan SUN E-mail:liums@qq.com;77569646@qq.com

摘要:

构网型储能在新型电力系统中的作用至关重要,比如参与电力系统调频和惯量控制等。然而,构网型储能的调节作用能否充分发挥,取决于其容量和位置是否正确配置。为解决构网型储能接入电网的优化配置问题,本工作研究了构网型储能参与高比例新能源电力系统调频的定容选址优化配置方法。首先,研究了高比例新能源下构网型储能参与调频的控制策略,包括构网型储能有功-频率下垂控制策略和构网型储能虚拟同步机控制策略,提出将两种控制策略进行协同使用的综合调频方法。然后,以调频效果指标、电网脆弱性指标和储能经济性为多目标进行优化,采用交叉变异多目标粒子群算法(CMMOPSO),结合逼近理想解排序法(TOPSIS),从解集中根据信息熵法权重,最终得到构网型储能电站选址定容的优化方案。最后,在某区域电网实际算例中进行验证和优化分析。

关键词: 构网型储能, 定容选址, 高比例新能源

Abstract:

Grid-forming energy storage plays an important role in new power systems; for instance, such storage participates in the frequency modulation and inertia control of power systems. However, whether such grid-forming energy storage can fully function in a regulatory role depends on the correct configuration of its capacity and location. To solve the problem of optimal allocation of grid-forming energy storage access to the power grid, this work examined the optimal allocation method of fixed volume location of grid-forming energy storage participating in the primary frequency modulation of a power system with a high proportion of new energy. First, the control strategy of the storage, including its active power frequency droop control strategy and the virtual synchronous machine control strategy, was examined. A comprehensive frequency regulation method combining the two control strategies was proposed. The primary frequency regulation effect index, power grid vulnerability index, and energy storage economy were considered as multiple objectives. Accordingly, a combination of the cross-mutation multi-objective particle swarm optimization algorithm with the TOPSIS algorithm was adopted. Based on the information entropy method weight from the Pareto solution set, an optimization plan was devised for determining the location and capacity of the grid-forming energy storage power stations. Finally, validation and optimization analyses were conducted for an actual calculation example of a regional power grid.

Key words: grid-forming energy storage, fixed capacity site selection, high proportional renewable energy

中图分类号: