1 |
O'NEILL S. Weights-based gravity energy storage looks to scale up[J]. Engineering, 2022, 14: 3-6. DOI: 10.1016/j.eng. 2022. 05.007.
|
2 |
王粟, 肖立业, 唐文冰, 等. 新型重力储能研究综述[J]. 储能科学与技术, 2022, 11(5): 1575-1582. DOI: 10.19799/j.cnki.2095-4239. 2021.0590.
|
|
WANG S, XIAO L Y, TANG W B, et al. Review of new gravity energy storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1575-1582. DOI: 10.19799/j.cnki.2095-4239. 2021. 0590.
|
3 |
张京业, 林玉鑫, 邱清泉, 等. 基于斜坡和山体的重力储能技术研究进展[J]. 储能科学与技术, 2024, 13(3): 924-933. DOI: 10.19799/j.cnki.2095-4239.2023.0667.
|
|
ZHANG J Y, LIN Y X, QIU Q Q, et al. Gravity energy storage technology based on slopes and mountains[J]. Energy Storage Science and Technology, 2024, 13(03): 924-933. DOI: 10.19799/j.cnki.2095-4239.2023.0667.
|
4 |
邱清泉, 罗晓悦, 林玉鑫, 等. 垂直式重力储能系统的研究进展和关键技术[J]. 储能科学与技术, 2024, 13(3): 934-945. DOI: 10.19799/j.cnki.2095-4239.2023.0789.
|
|
QIU Q Q, LUO X Y, LIN Y X, et al. Research progress and key technologies in vertical gravity energy storage systems[J]. Energy Storage Science and Technology, 2024, 13(03): 934-945. DOI: 10.19799/j.cnki.2095-4239.2023.0789.
|
5 |
严圣军, 董雪, 李军, 等. 一种矩阵式重力储能系统控制方法: CN202210629182.3[P]. 2022-09-06.
|
6 |
LI F F, XIE J Z, FAN Y F, et al. Potential of different forms of gravity energy storage[J]. Sustainable Energy Technologies and Assessments, 2024, 64: 103728. DOI: 10.1016/j.seta. 2024.103728.
|
7 |
MORSTYN T, CHILCOTT M, MCCULLOCH M D. Gravity energy storage with suspended weights for abandoned mine shafts[J]. Applied Energy, 2019, 239: 201-206. DOI: 10.1016/j.apenergy. 2019.01.226.
|
8 |
郑开云, 梁宏, 蒋励. 一种重力储能系统及其使用方法: CN202010634490.6[P]. 2024-04-26.
|
9 |
李明, 亚夏尔·吐尔洪, 查鲲鹏, 等. 用于快速响应负荷需求的两段式斜坡重力储能系统放电功率调节方法[J]. 电机与控制应用, 2024, 51(4): 12-19. DOI: 10.12177/emca.2024.007.
|
|
LI M, YAXIAER T, ZHA K P, et al. Discharging power adjustment of two-stage ramp-type gravity energy storage system for fast response to load demand[J]. Electric Machines & Control Application, 2024, 51(4): 12-19. DOI: 10.12177/emca.2024.007.
|
10 |
李震, 王斌, 牟雪鹏, 等. 基于瞬时功率镜像补偿的斜坡式重力储能系统功率平滑控制策略[J]. 电机与控制应用, 2024, 51(5): 12-20. DOI: 10.12177/emca.2024.026.
|
|
LI Z, WANG B, MOU X P, et al. Power smoothing control strategy for slope gravity energy storage system based on instantaneous power mirror compensation[J]. Electric Machines & Control Application, 2024, 51(5): 12-20. DOI: 10.12177/emca.2024.026
|
11 |
李震, 陈巨龙, 朱永清, 等. 基于效益分析的重力储能系统能流路径选择方法[J/OL]. 南方电网技术, 1-9[2024-07-01]. http://kns.cnki.net/kcms/detail/44.1643.TK.20240623.1335.012.html.
|
|
LI Z, CHEN J L, ZHU Y Q, et al. Energy flow path selection method of gravity energy storage system based on benefit analysis[J/OL]. Southern Power System Technology, 1-9[2024-07-01]. http://kns.cnki.net/kcms/detail/44.1643.TK.20240623.1335.012.html.
|
12 |
陈巨龙, 李震, 朱永清, 等. 基于深度神经网络的斜坡式重力储能系统质量块抓取装置控制方法[J]. 电机与控制应用, 2023, 50(11): 37-45. DOI: 10.12177/emca.2023.139.
|
|
CHEN J L, LI Z, ZHU Y Q, et al. Control method of mass block grasping device of slope gravity energy storage system based on deep neural network[J]. Electric Machines & Control Application, 2023, 50(11): 37-45. DOI: 10.12177/emca.2023.139.
|
13 |
秦婷婷, 周学志, 郭丁彰, 等. 铁轨重力储能系统效率影响因素研究[J]. 储能科学与技术, 2023, 12(3): 835-845. DOI: 10.19799/j.cnki.2095-4239.2022.0634.
|
|
QIN T T, ZHOU X Z, GUO D Z, et al. Study on factors influencing rail gravity energy storage system efficiency[J]. Energy Storage Science and Technology, 2023, 12(3): 835-845. DOI: 10.19799/j.cnki.2095-4239.2022.0634.
|
14 |
高天, 王祖凡, 方舒扬, 等. 含齿轮变速与链式传动机构的斜坡重力储能系统能效分析模型与实验验证[J]. 储能科学与技术, 2025, 14(2): 688-698. DOI: 10.19799/j.cnki.2095-4239.2024.0652.
|
|
GAO T, WANG Z F, FANG S Y, et al. Energy efficiency analysis model and experimental verification of gravity energy storage system with gear box and chain transmission mechanisms[J]. Energy Storage Science and Technology, 2025, 14(2): 688-698. DOI: 10.19799/j.cnki.2095-4239.2024.0652.
|
15 |
刘大猛, 陈巨龙, 王斌, 等. 一种斜坡式重力储能系统能效分析方法及系统: CN202310982616.2 [P]. 2023-11-28.
|
|
LIU D M, CHEN J L, WANG B, et al. Energy efficiency analysis method and system of slope gravity energy storage system: CN202310982616.2 [P]. 2023-11-28.
|
16 |
邓四二, 贾群义, 薛进学. 滚动轴承设计原理[M]. 北京: 中国标准出版社, 2008.
|
|
DENG S E, JIA Q Y, XIE J X. Principles of rolling bearing design[M]. Beijing: Standards Press of China, 2008.
|
17 |
王涛, 贺炜, 郑晨升. 带传动弹性滑动效率分析[J]. 机械科学与技术, 2003, 22(S2): 105-106, 108. DOI: 10.3321/j.issn:1003-8728.2003.z1.036.
|
|
WANG T, HE W, ZHENG C S. Analysis of efficiency of belt drivers by elastic slide [J]. Mechanical Science and Technology for Aerospace Engineering, 2003, 22(S2): 105-106, 108. DOI: 10.3321/j.issn:1003-8728.2003.z1.036.
|
18 |
韩彦龙, 田辉, 刘迎娟, 等. 摩擦带弹性滑动率与摩擦损失效率计算及实验[J]. 机械设计与制造, 2017(3): 64-67. DOI: 10.19356/j.cnki.1001-3997.2017.03.017.
|
|
HAN Y L, TIAN H, LIU Y J, et al. Calculation of creep ratio and loss efficiency of belt drive with experiment[J]. Machinery Design & Manufacture, 2017(3): 64-67. DOI: 10.19356/j.cnki.1001-3997.2017.03.017.
|
19 |
牟树贞, 赵海森, 罗应立, 等. 笼型异步电机在发电和电动工况下的损耗和无功特性研究[J]. 电机与控制应用, 2012, 39(3): 1-6, 28. DOI: 10.3969/j.issn.1673-6540.2012.03.001.
|
|
MOU S Z, ZHAO H S, LUO Y L, et al. Study on loss and reactive power characteristics of cage asynchronous motor with generator and motor modes[J]. Electric Machines & Control Application, 2012, 39(3): 1-6, 28. DOI: 10.3969/j.issn.1673-6540.2012.03.001.
|
20 |
国家市场监督管理总局, 国家标准化管理委员会. 三相异步电动机试验方法: GB/T 1032—2023[S]. 北京: 中国标准出版社, 2023.
|