1 |
KURKUTE N, PRIYAM A. A thorough review of the existing concentrated solar power technologies and various performance enhancing techniques[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(24): 14713-14737. DOI:10.1007/s10973-022-11634-8.
|
2 |
BELGASIM B, ALDALI Y, ABDUNNABI M J R, et al. The potential of concentrating solar power (CSP) for electricity generation in Libya[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 1-15. DOI:10.1016/j.rser.2018.03.045.
|
3 |
国家太阳能光热产业技术创新战略联盟. 中国太阳能热发电行业蓝皮书[R]. 2023.
|
4 |
张金平, 周强, 王定美, 等. 太阳能光热发电技术及其发展综述[J]. 综合智慧能源, 2023, 45(2): 44-52.
|
5 |
MANENTI F, RAVAGHI-ARDEBILI Z. Dynamic simulation of concentrating solar power plant and two-tanks direct thermal energy storage[J]. Energy, 2013, 55: 89-97. DOI:10.1016/j.energy.2013.02.001.
|
6 |
耿直, 刘浩晨, 莫子渊, 等. 基于EBSILON的中低温槽式光热发电系统运行仿真与性能分析[J]. 热力发电, 2020, 49(6): 61-68. DOI: 10.19666/j.rlfd.201911243.
|
|
GENG Z, LIU H C, MO Z Y, et al. EBSILON-based operation simulation and performance analysis for medium-low temperature trough photothermal power generation system[J]. Thermal Power Generation, 2020, 49(6): 61-68. DOI: 10.19666/j.rlfd.201911243.
|
7 |
赵明智, 张晓明, 张旭. 储热系统对槽式太阳能热发电系统的影响研究[J]. 能源工程, 2016, 36(3): 23-26. DOI: 10.16189/j.cnki.nygc.2016.03.005.
|
|
ZHAO M Z, ZHANG X M, ZHANG X. Study on the influence of thermal energy storage system to parabolic trough solar system[J]. Energy Engineering, 2016, 36(3): 23-26. DOI: 10.16189/j.cnki.nygc.2016.03.005.
|
8 |
EZEANYA E K, MASSIHA G H, SIMON W E, et al. System advisor model (SAM) simulation modelling of a concentrating solar thermal power plant with comparison to actual performance data[J]. Cogent Engineering, 2018, 5(1): 1524051. DOI:10.1080/23311916.2018.1524051.
|
9 |
陈宇恒. 槽式太阳能热发电系统建模与优化运行方法研究[D]. 南京: 东南大学, 2023.
|
|
CHEN Y H. Research on modeling and optimal operation method of trough solar thermal power generation system[D]. Nanjing: Southeast University, 2023.
|
10 |
LI X L, XU E S, SONG S, et al. Dynamic simulation of two-tank indirect thermal energy storage system with molten salt[J]. Renewable Energy, 2017, 113: 1311-1319. DOI:10.1016/j.renene.2017.06.024.
|
11 |
XU B, LI P W, CHAN C, et al. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant[J]. Applied Energy, 2015, 140: 256-268. DOI:10.1016/j.apenergy.2014.11.046.
|
12 |
ZAVERSKY F, GARCÍA-BARBERENA J, SÁNCHEZ M, et al. Transient molten salt two-tank thermal storage modeling for CSP performance simulations[J]. Solar Energy, 2013, 93: 294-311. DOI:10.1016/j.solener.2013.02.034.
|
13 |
YU Q, LI X L, WANG Z F, et al. Modeling and dynamic simulation of thermal energy storage system for concentrating solar power plant[J]. Energy, 2020, 198: 117183. DOI:10.1016/j.energy. 2020.117183.
|
14 |
斯楞戈. 50 MW槽式太阳能热发电站动态数学模型研究[D]. 北京: 华北电力大学, 2022. DOI: 10.27140/d.cnki.ghbbu.2022.001116.
|
|
SI L G. Study on dynamic mathematical model of 50 MW trough solar thermal power station[D]. Beijing: North China Electric Power University, 2022. DOI: 10.27140/d.cnki.ghbbu. 2022.001116.
|
15 |
孟强, 陈梦东, 胡晓, 等. 管内熔融盐强制对流传热的数值模拟[J]. 储能科学与技术, 2019, 8(3): 544-550. DOI: 10.12028/j.issn.2095-4239.2018.0247.
|
|
MENG Q, CHEN M D, HU X, et al. Numerical simulation of forced convective heat transfer of molten salt in tubes[J]. Energy Storage Science and Technology, 2019, 8(3): 544-550. DOI: 10.12028/j.issn.2095-4239.2018.0247.
|
16 |
刘厚林, 谈明高. 离心泵现代设计方法[M]. 北京: 机械工业出版社, 2013.
|
|
LIU H L, TAN M G. Modern design methods for centrifugal pumps[M]. Beijing: China Machine Press, 2013.
|
17 |
BARTH D L, PACHECO J E, KOLB W J, et al. Development of a high-temperature, long-shafted, molten-salt pump for power tower applications[J]. Journal of Solar Energy Engineering, 2002, 124(2): 170-175. DOI:10.1115/1.1464126.
|
18 |
马良玉, 段新会, 贡献, 等. 变速调节锅炉给水泵实时仿真数学模型[J]. 华北电力大学学报, 1998, 25(4): 65-70.
|
|
MA L Y, DUAN X H, GONG X, et al. Real-time simulation mathematical model of variable speed regulating boiler feed water pump[J]. Journal of North China Electric Power University (Natural Science Edition), 1998, 25(4): 65-70.
|
19 |
斯楞戈, 徐二树, 汤建方, 等. 50MW槽式太阳能光热电站储热系统建模[J]. 能源与节能, 2022(5): 1-8, 58. DOI: 10.3969/j.issn.2095-0802.2022.05.001.
|
|
SI L G, XU E S, TANG J F, et al. Modeling of heat storage system in 50 MW trough solar thermal power plant[J]. Energy and Energy Conservation, 2022(5): 1-8, 58. DOI: 10.3969/j.issn.2095-0802.2022.05.001.
|
20 |
杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006.
|
21 |
HUANG H Y, XU E S, SI L G, et al. Dynamic thermal transport characteristics of a real-time simulation model for a 50 MW solar power tower plant[J]. Energies, 2023, 16(4): 1946. DOI:10.3390/en16041946.
|
22 |
YU Q, WANG Z F, XU E S. Simulation and experimental research of 1MWe solar tower power plant in China[C]//Solarpaces 2015: International Conference on Concentrating Solar Power and Chemical Energy Systems, Cape Town, South Africa. Author(s), 2016. DOI:10.1063/1.4949179.
|
23 |
SI L G, XU E S, TANG J F, et al. Study on dynamic model and dynamic characteristics of Delingha 50 MW trough solar field[J]. Applied Thermal Engineering, 2022, 215: 118943. DOI:10.1016/j.applthermaleng.2022.118943.
|
24 |
LI X L, WANG Z F, XU E S, et al. Dynamically coupled operation of two-tank indirect TES and steam generation system[J]. Energies, 2019, 12(9): 1720. DOI:10.3390/en12091720.
|