1 |
关于印发"十四五"可再生能源发展规划的通知[EB/OL]. https://www.ndrc.gov.cn/xwdt/tzgg/202206/t20220601_1326720.html.
|
2 |
向深远海挺进!我国加速打造五大海上风电基地[EB/OL]. http://www.sasac.gov.cn/n2588025/n2588124/c27563663/content.html.
|
3 |
HE Y, GUO S, ZHOU J X, et al. The quantitative techno-economic comparisons and multi-objective capacity optimization of wind-photovoltaic hybrid power system considering different energy storage technologies[J]. Energy Conversion and Management, 2021, 229: 113779. DOI: 10.1016/j.enconman. 2020.113779.
|
4 |
WU Y N, ZHANG T, GAO R, et al. Portfolio planning of renewable energy with energy storage technologies for different applications from electricity grid[J]. Applied Energy, 2021, 287: 116562. DOI: 10.1016/j.apenergy.2021.116562.
|
5 |
GUERRA O J, ZHANG J Z, EICHMAN J, et al. The value of seasonal energy storage technologies for the integration of wind and solar power[J]. Energy & Environmental Science, 2020, 13(7): 1909-1922. DOI: 10.1039/D0EE00771D.
|
6 |
王志文, 熊伟, 王海涛, 等. 水下压缩空气储能研究进展[J]. 储能科学与技术, 2015, 4(6): 585-598. DOI: 10.3969/j.issn.2095-4239. 2015.06.006.
|
|
WANG Z W, XIONG W, WANG H T, et al. A review on underwater compressed air energy storage[J]. Energy Storage Science and Technology, 2015, 4(6): 585-598. DOI: 10.3969/j.issn.2095-4239. 2015.06.006.
|
7 |
刘扬波, 陈俊生, 李全皎, 等. 海上风电水下压缩空气储能系统运行及变工况分析[J]. 南方电网技术, 2022, 16(4): 50-59. DOI: 10.13648/j.cnki.issn1674-0629.2022.04.006.
|
|
LIU Y B, CHEN J S, LI Q J, et al. Operation and varying load analysis of offshore wind-underwater compressed air energy storage system[J]. Southern Power System Technology, 2022, 16(4): 50-59. DOI: 10.13648/j.cnki.issn1674-0629.2022.04.006.
|
8 |
李瑞, 陈来军, 梅生伟, 等. 先进绝热压缩空气储能变工况运行特性建模及风储协同分析[J]. 电力系统自动化, 2019, 43(11): 25-33. DOI: 10.7500/AEPS20180829002.
|
|
LI R, CHEN L J, MEI S W, et al. Modelling the off-design operation characteristics of advanced adiabatic compressed air energy storage and cooperative analysis of hybrid wind power and energy storage system[J]. Automation of Electric Power Systems, 2019, 43(11): 25-33. DOI: 10.7500/AEPS20180829002.
|
9 |
孙晓霞, 桂中华, 高梓玉, 等. 压缩空气储能系统动态运行特性[J]. 储能科学与技术, 2023, 12(6): 1840-1853. DOI: 10.19799/j.cnki. 2095-4239.2023.0181.
|
|
SUN X X, GUI Z H, GAO Z Y, et al. Dynamic characteristics of compressed air energy storage system[J]. Energy Storage Science and Technology, 2023, 12(6): 1840-1853. DOI: 10.19799/j.cnki.2095-4239.2023.0181.
|
10 |
侯磊, 王子驰, 李营超, 等. 压缩空气储能系统分析及多目标优化[J]. 储能科学与技术, 2021, 10(1): 379-384. DOI: 10.19799/j.cnki.2095-4239.2020.0273.
|
|
HOU L, WANG Z C, LI Y C, et al. Analysis and multi-objective optimization of CAES system[J]. Energy Storage Science and Technology, 2021, 10(1): 379-384. DOI: 10.19799/j.cnki.2095-4239.2020.0273.
|
11 |
GUO H, XU Y J, ZHU Y L, et al. Coupling properties of thermodynamics and economics of underwater compressed air energy storage systems with flexible heat exchanger model[J]. Journal of Energy Storage, 2021, 43: 103198. DOI: 10.1016/j.est.2021.103198.
|
12 |
CHEUNG B C, CARRIVEAU R, TING D S K. Parameters affecting scalable underwater compressed air energy storage[J]. Applied Energy, 2014, 134: 239-247. DOI: 10.1016/j.apenergy. 2014.08.028.
|
13 |
WANG Z W, XIONG W, TING D S K, et al. Conventional and advanced exergy analyses of an underwater compressed air energy storage system[J]. Applied Energy, 2016, 180: 810-822. DOI: 10.1016/j.apenergy.2016.08.014.
|
14 |
EBRAHIMI M, CARRIVEAU R, TING D S K, et al. Conventional and advanced exergy analysis of a grid connected underwater compressed air energy storage facility[J]. Applied Energy, 2019, 242: 1198-1208. DOI: 10.1016/j.apenergy.2019.03.135.
|
15 |
LIU Z, DING J L, HUANG X Y, et al. Analysis of a hybrid heat and underwater compressed air energy storage system used at coastal areas[J]. Applied Energy, 2024, 354: 122142. DOI: 10. 1016/j.apenergy.2023.122142.
|
16 |
CHEUNG B C, CARRIVEAU R, TING D S K. Multi-objective optimization of an underwater compressed air energy storage system using genetic algorithm[J]. Energy, 2014, 74: 396-404. DOI: 10.1016/j.energy.2014.07.005.
|
17 |
PIMM A J, GARVEY S D, DE JONG M. Design and testing of Energy Bags for underwater compressed air energy storage[J]. Energy, 2014, 66: 496-508. DOI: 10.1016/j.energy.2013.12.010.
|
18 |
JONG M D. Commercial grid scaling of Energy Bags for underwater compressed air energy storage[J]. International Journal of Environmental Studies, 2014, 71(6): 804-811. DOI: 10. 1080/00207233.2014.947726.
|
19 |
刘超群, 谢迎春, 李相坤, 等. 水下储气装置的水动力学特性分析[J]. 机电工程, 2023, 40(8): 1284-1290. DOI: 10.3969/j.issn.1001-4551.2023.08.018.
|
|
LIU C Q, XIE Y C, LI X K, et al. Analysis of hydrodynamic characteristics of underwater gas storage device[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(8): 1284-1290. DOI: 10.3969/j.issn.1001-4551.2023.08.018.
|
20 |
王金舜, 王虎, 熊伟, 等. 水下压缩空气储能系统储气装置的CFD数值模拟[J]. 液压与气动, 2021, 45(1): 27-35.
|
|
WANG J S, WANG H, XIONG W, et al. Numerical simulation of air storage container in underwater compressed air storage system[J]. Chinese Hydraulics & Pneumatics, 2021, 45(1): 27-35.
|
21 |
BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268. DOI: 10. 1016/j.apenergy.2016.02.108.
|
22 |
KARACA A E, DINCER I, NITEFOR M. A new renewable energy system integrated with compressed air energy storage and multistage desalination[J]. Energy, 2023, 268: 126723. DOI: 10. 1016/j.energy.2023.126723.
|
23 |
LIU Z, LIU X, YANG S J, et al. Assessment evaluation of a trigeneration system incorporated with an underwater compressed air energy storage[J]. Applied Energy, 2021, 303: 117648. DOI: 10.1016/j.apenergy.2021.117648.
|
24 |
WANG Z W, TING D S K, CARRIVEAU R, et al. Design and thermodynamic analysis of a multi-level underwater compressed air energy storage system[J]. Journal of Energy Storage, 2016, 5: 203-211. DOI: 10.1016/j.est.2016.01.002.
|
25 |
孙天宇, 任建兴, 张健, 等. 采用热泵的低温多效海水淡化系统能耗研究[J]. 热力发电, 2015, 44(3): 73-75, 80. DOI: 10.3969/j.issn. 1002-3364.2015.03.073.
|
|
SUN T Y, REN J X, ZHANG J, et al. Energy consumption of LT-MED seawater desalination system equipped with heat pump[J]. Thermal Power Generation, 2015, 44(3): 73-75, 80. DOI: 10. 3969/j.issn.1002-3364.2015.03.073.
|
26 |
卜宪标, 陈昕, 李华山, 等. 面向海上风电的水下压缩空气储能性能分析及提效技术[J]. 电力建设, 2024, 45(8): 106-117. DOI: 10. 12204/j.issn.1000-7229.2024.08.010.
|
|
BU X B, CHEN X, LI H S, et al. Performance analysis and efficiency-improving technology of underwater compressed air energy storage for offshore wind power[J]. Electric Power Construction, 2024, 45(8): 106-117. DOI: 10.12204/j.issn.1000-7229.2024.08.010.
|
27 |
卜宪标, 王一鸣, 刘石, 等. 废弃矿地下空间储能方案及性能[J]. 西安交通大学学报, 2024, 58(10): 145-155. DOI: 10.7652/xjtuxb2024 10013.
|
|
BU X B, WANG Y M, LIU S, et al. Energy storage scheme and performance evaluation in underground spaces of abandoned mines[J]. Journal of Xi'an Jiaotong University, 2024, 58(10): 145-155. DOI: 10.7652/xjtuxb202410013.
|
28 |
程浙武. 低温绝热压缩空气储能系统变工况性能分析及设计优化研究[D]. 杭州: 浙江大学, 2019.
|
|
CHENG Z W. Research on off-design performance analysis and design optimization of low-temperature adiabatic compressed air energy storage system[D]. Hangzhou: Zhejiang University, 2019.
|