储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 1160-1167.doi: 10.19799/j.cnki.2095-4239.2025.0168

• 储能新锐科学家专刊 • 上一篇    下一篇

基于水下压缩空气储能的远海电淡冰冷热联产系统性能分析

杨毅1,3(), 刘石1,3, 黄正1,3, 卜宪标2(), 吴蔚1, 温喆然1, 徐军涛1, 李士杰4   

  1. 1.广东新型储能国家研究院有限公司,广东 广州 510080
    2.中国科学院广州能源研究所,广东 广州 510640
    3.南方电网电力科技股份有限公司,广东 广州 510080
    4.中国南方电网有限责任公司,广东 广州 510663
  • 收稿日期:2025-02-22 修回日期:2025-03-12 出版日期:2025-03-28 发布日期:2025-04-28
  • 通讯作者: 卜宪标 E-mail:yyxt007@sina.cn;buxb@ms.giec.ac.cn
  • 作者简介:杨毅(1987—),男,硕士,高级工程师,研究方向为先进物理储能技术,E-mail:yyxt007@sina.cn
  • 基金资助:
    南方电网科技创新项目(ZBKJXM20240191)

Performance analysis of an offshore electricity, freshwater, ice, and heating-cooling polygeneration system based on underwater compressed air energy storage

Yi YANG1,3(), Shi LIU1,3, Zheng HUANG1,3, Xianbiao BU2(), Wei WU1, Zheran WEN1, Juntao XU1, Shijie LI4   

  1. 1.National Institute of Guangdong Advanced Energy Storage, Guangzhou 510080, Guangdong, China
    2.Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
    3.China Southern Power Grid Technology Co. , Ltd. , Guangzhou 510080, Guangdong, China
    4.China Southern Power Grid Co. , Ltd. , Guangzhou 510663, Guangdong, China
  • Received:2025-02-22 Revised:2025-03-12 Online:2025-03-28 Published:2025-04-28
  • Contact: Xianbiao BU E-mail:yyxt007@sina.cn;buxb@ms.giec.ac.cn

摘要:

提出了基于水下压缩空气储能的电淡冰冷热多联产系统,以解决海上可再生能源发电的配储难题以及远海对电、淡水、冰和冷热获取难的问题。构建了储释能过程以及多联产过程的热动力学数学模型,分析了发电、制冰、制冷以及生产淡水和热水的性能。结果表明:水下定压储能的储能密度和能量回收效率较定容储能实现大幅提高。另外,通过压缩空气储能以及级间压缩热和膨胀制冷,可以在海上同时生产电能、淡水、热水、冰和冷能;级间压缩热除了加热膨胀机进气,还可以驱动多效蒸馏海水淡化设备生产淡水同时生产60 ℃以上热水。对于深度500 m,容积10000 m3的储气罐,每天的淡水产量达51.45 t;抽取中间级膨胀机出口气体进行膨胀制冰制冷,当抽取50%空气流量(30.4 kg/s)时,每天可制冰30.72 t。水下压缩空气储能可以解决海上风电和光伏的不稳定难题,促进海上可再生能源发电更大规模的发展。依托水下压缩空气储能系统可以建立海上能源站,为远海岛屿、渔船、商船和浮动平台等提供电淡冰冷热供应,助力海洋经济高质量发展。

关键词: 水下压缩空气储能, 定压储能, 冷热电淡冰多联产, 电淡联产, 海上能源站

Abstract:

A novel integrated system based on underwater compressed air energy storage (UCAES) has been proposed to address the challenges of energy storage for offshore renewable energy and the scarcity of electricity, freshwater, ice, and thermal resources in remote marine areas. This system is designed to provide comprehensive solutions for producing electricity, freshwater, ice, cooling, and heating. Thermodynamic models were established to analyze the energy storage and release processes alongside the performance of the polygeneration system. Key findings include: Constant-pressure underwater energy storage offers significantly higher energy storage density and energy recovery efficiency compared to constant-volume storage methods. The integrated system can simultaneously produce electricity, freshwater, hot water, ice, and cooling through compressed air energy storage with interstage compression heat and expansion refrigeration. The interstage compression heat not only preheats the air entering the expander but also powers multieffect distillation desalination devices, enabling the production of 51.45 tons of freshwater per day while also supplying hot water above 60°C, using a 10000 m3 underwater air storage tank at a depth of 500 m. Intermediate-stage expanded air extraction supports ice production and refrigeration, with a daily ice output of 30.72 tons when extracting 50% of air flow rate (equivalent to 30.4 kg/s). The UCAES system effectively resolves the intermittency challenges of offshore wind and solar power, enabling the large-scale development of marine renewable energy. This technology supports the establishment of offshore energy stations that can provide comprehensive energy services for remote islands, fishing vessels, merchant ships, and floating platforms, thereby promoting high-quality growth of the marine economy.

Key words: underwater compressed air energy storage, isobaric energy storage, electricity-freshwater-ice-cooling-heating polygeneration system, cogeneration of electricity and freshwater, marine energy stations

中图分类号: