• •
收稿日期:
2025-05-26
修回日期:
2025-07-01
作者简介:
汤凯(1982—),男,硕士学位,高级工程师,锂离子电池正极材料研究,E-mail: tansanzan@qq.com
基金资助:
Received:
2025-05-26
Revised:
2025-07-01
摘要:
锂离子电池正极材料磷酸锰铁锂(LiFe1-yMnyPO4,记作LMFP)因两相(LiFePO4与LiMnPO4)堆叠、锰铁分布不均及电化学性能退化等问题,严重阻碍其商业化应用。本研究提出基于焦磷酸亚锰铁((Fe1-yMny)2P2O7,MFP)固溶体的前驱体均匀化策略,通过开发和设计雾化高温合成(AHTS)炉,实现MFP的连续化生产,进而制备高性能LMFP正极材料。MFP前驱体以原子级Fe/Mn共沉淀为核心,将均匀性传递至LMFP晶格,抑制反位缺陷并消除两相堆叠共存,突破传统改性方法(如碳包覆、掺杂等)的局限。AHTS-MFP工艺采用微米级雾状液滴反应器,结合多约束耦合迭代优化设计方法,开发专用合成装置。通过三维热力学-流体力学-化学反应动力学多场耦合仿真,优化流场、温度场及氧浓度控制,形成稳定气旋锁结构,确保雾状液滴在炉膛内依次经历蒸发、共沉淀、干燥与缩合反应,停留时间大于15秒,实现材料的高结晶度与元素均质性。装置关键设计涵盖对称喷嘴阵列、切向火道燃烧系统及多层阻氧复合结构,结合动态氮气注入技术,将炉内氧浓度精准控制在小于1%。生产试验所制(Fe0.35Mn0.65)2P2O7样品的SEM图像、XRD图谱、HAADF-STEM图像与EDS映射图显示样品为各元素分布均匀的固溶体材料。由其制备的LMFP正极材料LiFe0.35Mn0.65PO4呈均一橄榄石型结构,XRD无杂相,HAADF-STEM图像与EDS映射图显示样品各元素分布均匀,证实前驱体的均匀性成功传递至终产物。本研究通过工艺与装备创新,攻克LMFP工业化中两相堆叠与元素分布不均的难题,为其工业化生产提供了关键技术支撑。
中图分类号:
汤凯. 焦磷酸亚锰铁固溶体连续化生产装置设计[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0493.
Kai TANG. Design of a Continuous Production Facility for Solid-Solution Manganese Iron Pyrophosphate[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0493.
[1] | WANG L, LI Y, DAI Y, et al. Effect of Mn content on electrochemical performance and energy density of LiFe1-xMnxPO4/C[J/OL]. Vacuum, 2022, 196: 110730. DOI:10.1016/j.vacuum.2021.110730. |
[2] | DENG Y, YANG C, ZOU K, et al. Recent Advances of Mn‐Rich LiFe1-yMnyPO4 (0.5 ≤y<1.0) Cathode Materials for High Energy Density Lithium Ion Batteries[J/OL]. Advanced Energy Materials, 2017, 7(13): 1601958. DOI:10.1002/aenm.201601958. |
[3] | OH S M, JUNG H G, YOON C S, et al. Enhanced electrochemical performance of carbon–LiFe1-xMnxPO4 nanocomposite cathode for lithium-ion batteries[J/OL]. Journal of Power Sources, 2011, 196(16): 6924-6928. DOI:10.1016/j.jpowsour.2010.11.159. |
[4] | KIM J K, VIJAYA R, ZHU L, et al. Improving electrochemical properties of porous iron substituted lithium manganese phosphate in additive addition electrolyte[J/OL]. Journal of Power Sources, 2015, 275: 106-110. DOI:10.1016/j.jpowsour.2014.11.028. |
[5] | YAMADA A, KUDO Y, LIU K Y. Phase diagram of LixMnyFe1-yPO4 (0≤x, y≤1)[J/OL]. Journal of The Electrochemical Society, 2001, 148(10): A1153. DOI:10.1149/1.1401083. |
[6] | KOPE¢ M, YAMADA A, KOBAYASHI G, et al. Structural and magnetic properties of LixMnyFe1-yPO4 electrode materials for Li-ion batteries[J/OL]. Journal of Power Sources, 2009, 189(2): 1154-1163. DOI:10.1016/j.jpowsour.2008.12.096. |
[7] | YAMADA A, CHUNG S C. Crystal chemistry of the olivine-type LiMnyFe1-yPO4 and MnyFe1-yPO4 as possible 4 V cathode materials for lithium batteries[J/OL]. Journal of The Electrochemical Society, 2001, 148(8): A960. DOI:10.1149/1.1385377. |
[8] | JENSEN K M Ø, CHRISTENSEN M, GUNNLAUGSSON H P, et al. Defects in hydrothermally synthesized LiFePO4 and LiFe1-xMnxPO4 cathode materials[J/OL]. Chemistry of Materials, 2013, 25(11): 2282-2290. DOI:10.1021/cm4008393. |
[9] | GARDINER G R, ISLAM M S. Anti-site defects and ion migration in the LiFe0.5Mn0.5PO4 mixed-metal cathode material[J/OL]. Chemistry of Materials, 2010, 22(3): 1242-1248. DOI:10.1021/cm902720z. |
[10] | HUANG W, TAO S, ZHOU J, et al. Phase separations in LiFe1-xMnxPO4 : A random stack model for efficient cathode materials[J/OL]. The Journal of Physical Chemistry C, 2013, 118(2): 796-803. DOI:10.1021/jp4081564. |
[11] | PAOLELLA A, BERTONI G, DILENA E, et al. Redox centers evolution in phospho-olivine type (LiFe0.5Mn0.5PO4) nanoplatelets with uniform cation distribution[J/OL]. Nano Letters, 2014, 14(3): 1477-1483. DOI:10.1021/nl4046697. |
[12] | OMBRINI P, BAZANT M Z, WAGEMAKER M, et al. Thermodynamics of multi-sublattice battery active materials: from an extended regular solution theory to a phase-field model of LiMnyFe1-yPO4 [J/OL]. npj Computational Materials, 2023, 9(1): 1-11. DOI:10.1038/s41524-023-01109-1. |
[13] | MUNOZ-GARCIA A B, TIRRI B, CAPONE I, et al. Structural evolution of disordered LiCo1/3Fe1/3Mn1/3PO4 in lithium batteries uncovered[J/OL]. Journal of Materials Chemistry A, 2020, 8(37): 19641-19653. DOI:10.1039/d0ta05350c. |
[14] | LI S, ZHANG H, LIU Y, et al. Comprehensive understanding of structure transition in LiMnyFe1-yPO4 during delithiation/lithiation[J/OL]. Advanced Functional Materials, 2024, 34(4): 2310057. DOI:10.1002/adfm.202310057. |
[15] | RAVNSBÆK D B, XIANG K, XING W, et al. Extended solid solutions and coherent transformations in nanoscale olivine cathodes[J/OL]. Nano Letters, 2014, 14(3): 1484-1491. DOI:10.1021/nl404679t. |
[16] | SARAVANAN K, RAMAR V, BALAYA P, et al. LiMnxFe1-xPO4/C (x = 0.5, 0.75 and 1) nanoplates for lithium storage application[J/OL]. Journal of Materials Chemistry, 2011, 21(38): 14925. DOI:10.1039/c1jm11541c. |
[17] | DU K, ZHANG L H, CAO Y B, et al. Synthesis of LiMn0.2Fe0.8PO4/C by co-precipitation method and its electrochemical performances as a cathode material for lithium-ion batteries[J/OL]. Materials Chemistry and Physics, 2012, 136(2-3): 925-929. DOI:10.1016/j.matchemphys.2012.08.021. |
[18] | ZUO P, WANG L, ZHANG W, et al. A novel nanoporous Fe-doped lithium manganese phosphate material with superior long-term cycling stability for lithium-ion batteries[J/OL]. Nanoscale, 2015, 7(27): 11509-11514. DOI:10.1039/C5NR01881A. |
[19] | KIM M S, JEGAL J P, ROH K C, et al. Synthesis of LiMn0.75Fe0.25PO4/C microspheres using a microwave-assisted process with a complexing agent for high-rate lithium ion batteries[J/OL]. J. Mater. Chem. A, 2014, 2(27): 10607-10613. DOI:10.1039/C4TA01197J. |
[20] | KIM M S, KIM H K, LEE S W, et al. Synthesis of reduced graphene oxide-modified LiMn0.75Fe0.25PO4 microspheres by salt-assisted spray drying for high-performance lithium-ion batteries[J/OL]. Scientific Reports, 2016, 6(1): 26686. DOI:10.1038/srep26686. |
[21] | YANG C C, CHEN W H. Microsphere LiMn0.5Fe0.5PO4/C composite as high rate and long-life cathode material for lithium-ion battery[J/OL]. Materials Chemistry and Physics, 2016, 173: 482-490. DOI:10.1016/j.matchemphys.2016.02.042. |
[22] | ZHANG X, HOU M, TAMIRATE A G, et al. Carbon coated nano-sized LiMn0.8Fe0.2PO4 porous microsphere cathode material for Li-ion batteries[J/OL]. Journal of Power Sources, 2020, 448: 227438. DOI:10.1016/j.jpowsour.2019.227438. |
[23] | ZHANG B, WANG X, LIU Z, et al. Enhanced electrochemical performances of carbon coated mesoporous LiMn0.2Fe0.8PO4 [J/OL]. Journal of The Electrochemical Society, 2010, 157(3): A285. DOI:10.1149/1.3280230. |
[24] | OH S M, MYUNG S T, CHOI Y S, et al. Co-precipitation synthesis of micro-sized spherical LiMn0.5Fe0.5PO4 cathode material for lithium batteries[J/OL]. Journal of Materials Chemistry, 2011, 21(48): 19368. DOI:10.1039/c1jm13889h. |
[25] | XIANG W, WANG E H, CHEN M Z, et al. Hierarchical structured LiMn0.5Fe0.5PO4 spheres synthesized by template-engaged reaction as cathodes for high power Li-ion batteries[J/OL]. Electrochimica Acta, 2015, 178: 353-360. DOI:10.1016/j.electacta.2015.08.024. |
[26] | VANAPHUTI P, MANTHIRAM A. Enhancing the mn redox kinetics of LiMn0.5Fe0.5PO4 cathodes through a synergistic co-doping with niobium and magnesium for lithium-ion batteries[J/OL]. Small (Weinheim an Der Bergstrasse, Germany), 2024, 20(47): e2404878. DOI:10.1002/smll.202404878. |
[27] | LV Z, LI M, LIN J, et al. First-principles study on LiMn0.5Fe0.5PO4 doping to decrease the Jahn-Teller effect[J/OL]. Journal of Solid State Electrochemistry, 2024, 28(2): 577-587. DOI:10.1007/s10008-023-05705-5. |
[28] | YANG L, XIA Y, QIN L, et al. Concentration-gradient LiMn0.8Fe0.2PO4 cathode material for high performance lithium ion battery[J/OL]. Journal of Power Sources, 2016, 304: 293-300. DOI:10.1016/j.jpowsour.2015.11.037. |
[29] | OH S, MYUNG S, PARK J B, et al. Double‐structured LiMn0.85Fe0.15PO4 coordinated with lifepo4 for rechargeable lithium batteries[J/OL]. Angewandte Chemie International Edition, 2012, 51(8): 1853-1856. DOI:10.1002/anie.201107394. |
[30] | YI M, XU C Q. A positive electrode material LiMn1-xFexPO4/C and its preparation method: CN105702954A[P]. |
[31] | KOSOVA N V, TSAPINA A M, SLOBODYUK A B, et al. Structure and electrochemical properties of mixed transition-metal pyrophosphates Li2Fe1-yMnyP2O7 (0≤y≤1)[J/OL]. Electrochimica Acta, 2015, 174: 1278-1289. DOI:10.1016/j.electacta.2015.06.070. |
[32] | YU H J, WANG T, XIE Y H, et al. Method for preparing lithium iron manganese phosphate cathode material by coprecipitation and application thereof: CN115676794B[P]. |
[33] | XIE X M, FAN C Y, CHEN J T, et al. A carbon-coated lithium iron manganese phosphate material and its preparation method and battery: CN115744860B[P]. |
[34] | REN X, RUAN D S, CHEN R K, et al. A manganese iron pyrophosphate, lithium iron manganese phosphate and their preparation methods and batteries: CN117715861A[P]. |
[35] | HONG Y T, QIAO L, LIU X H. Application of Ruthner-spray roasting waste hydrochloric acid regeneration technology in cold rolling[J]. Modern Chemical Industry, 2005(1): 48-50. DOI:10.16606/j.cnki.issn0253-4320.2005.01.013. |
[36] | KOZHUKHAROV S, TCHAOUSHEV S. Spray pyrolysis equipment for various applications[J]. Journal of Chemical Technology and Metallurgy, 2013, 48(1): 111-118. |
[37] | SU Z H. Optimal design of waste hydrochloric acid regeneration technology by spray roasting [D]. Southwest University of Science and Technology, 2021. |
[38] | WU C, WU J H, SU D, et al. A method for preparing manganese - iron phosphate materials by spray pyrolysis technology: CN118183674A [P]. |
[39] | LEI Z, WANG J, YANG J, et al. Nano/micro-hierarchical-structured LiMn0.85Fe0.15PO4 cathode material for advanced lithium ion battery[J/OL]. ACS Applied Materials & Interfaces, 2018, 10(50): 43552-43560. DOI:10.1021/acsami.7b04193. |
[40] | TANG K. An electrode active material and its preparation method, and a preparation method of carbon-coated lithium iron manganese phosphate: CN119349534A[P] |
[41] | TANG K. Production equipment for precursor of lithium iron manganese phosphate cathode material and production method thereof: CN119500014A[P]. |
[42] | ADHAM K. Energy consumption for iron chloride pyrohydrolysis, A comparison between fluidized beds and spray roasters[J]. Iron Control Technologies, Proceedings of the third international symposium on iron control in hydrometallurgy, Montreal, CANADA, 2006, 2006. |
[43] | SCHIEMANN M, WIRTZ S, SCHERER V, et al. Spray roasting of iron chloride FeCl2: laboratory scale experiments and a model for numerical simulation[J/OL]. Powder Technology, 2012, 228: 301-308. DOI:10.1016/j.powtec.2012.05.037. |
[44] | SCHIEMANN M, WIRTZ S, SCHERER V, et al. Spray roasting of iron chloride FeCl2: Numerical modelling of industrial scale reactors[J/OL]. Powder Technology, 2013, 245: 70-79. DOI:10.1016/j.powtec.2013.04.034. |
[45] | NARITA E, OKABE T. The Thermal decomposition of manganese(III) phosphate monohydrate[J/OL]. Bulletin of the Chemical Society of Japan, 1983, 56(9): 2841-2842. DOI:10.1246/bcsj.56.2841. |
[46] | KAWAZOE H, AMETANI K, IMAI M, et al. The "overcondensation" of phosphate ions and the formation of conjugate metal oxide upon the thermal dehydration-condensation of hydrogenorthophosphates[J/OL]. Bulletin of the Chemical Society of Japan, 1978, 51(10): 2886-2889. DOI:10.1246/bcsj.51.2886. |
[47] | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J/OL]. AIAA Journal, 1994, 32(8): 1598-1605. DOI:10.2514/3.12149. |
[1] | 刘范芬, 吴婷婷, 温圣耀, 高建行, 陈勐, 李迟. LiMn0.6Fe0.4PO4 过渡金属离子溶出及其对循环性能的影响研究[J]. 储能科学与技术, 2025, 14(1): 13-20. |
[2] | 文志朋, 潘凯, 韦毅, 郭佳文, 覃善丽, 蒋雯, 吴炼, 廖欢. 磷酸锰铁锂正极材料改性研究进展[J]. 储能科学与技术, 2024, 13(3): 770-787. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||