1 |
肖先勇,郑子萱, "双碳"目标下新能源为主体的新型电力系统:贡献,关键技术与挑战[J].工程科学与技术, 2022, 54(1): 47-59.
|
|
XIAO X Y, ZHENG Z X. New Power Systems Dominated by Renewable Energy Towards the Goal of Emission Peak & Carbon Neutrality: Contribution, Key Techniques, and Challenges [J]. Advanced Engineering Sciences, 2022, 54(1): 47-59.
|
2 |
刘畅,卓建坤,赵东明,李水清,陈景硕,王金星,姚强,利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J].中国电机工程学报, 2020, 40(1): 18.
|
|
LI C, ZHUO J K, ZHAO D M, LI SH Q, CHEN J S, WANG J X, YAO Q, A Review on the Utilization of Energy Storage System for the Flexible and Safe Operation of Renewable Energy Microgrids[J]. Proceedings of the CSEE, 2020, 40(1): 18.
|
3 |
潘新慧,陈人杰,吴锋,电化学储能技术发展研究[J].中国工程科学, 2023, 25(6): 11.
|
|
PAN X H, CHEN R J, WU F, Development of Electrochemical Energy Storage Technology[J]. Strategic Study of CAE, 2023, 25(6): 11.
|
4 |
吴皓文,王军,龚迎莉,杨海瑞,张缦,黄中,储能技术发展现状及应用前景分析[J].电力学报, 2021, 36(5): 10.
|
|
WU H W, WANG J, GONG Y L, YANG H R, ZHANG M,HUANG Z, Development Status and Application Prospect Analysis of Energy Storage Technology[J]. Journal of Electric Power, 2021, 36(5): 10.
|
5 |
盛军,付一民,俞会根,储能软包大模组结构稳定性[J].储能科学与技术, 2023, 12(2): 579-584.
|
|
SHENG J,FU Y M, YU H G, Structure simulation of large soft pack module for energy storage[J]. Energy Storage Science and Technology, 2023, 12(2): 579-584.
|
6 |
梁浩斌,杜建华,郝鑫,杨世治,涂然,张认成,锂电池膨胀形成机制研究现状[J].储能科学与技术, 2021, 10(2): 647-657.
|
|
LIANG H B, DU J H, HAO X, YANG S Z, TU R, ZHANG R C, A review of current research on the formation mechanism of lithium batteries[J]. Energy Storage Science and Technology,2021, 10(2): 647-657.
|
7 |
金阳,薛志业,姜欣,吕娜伟,储能锂离子电站安全防护研究进展[J]. 郑州大学学报(理学版), 2023, 55(3): 1-13.
|
|
JING Y, XUE Z Y, JIANG X, LV N W, Research Progress of Safety Protection of Lithium-ion Energy Storage Power Station[J]. Journal of Zhengzhou University(Natural Science Edition), 2023, 55(3): 1-13.
|
8 |
CHEN, S, X WEI, G ZHANG, X RUI, C XU, X FENG, H DAI,M OUYANG, Active and passive safety enhancement for batteries from force perspective[J]. Renewable and Sustainable Energy Reviews, 2023, 187: 113740.
|
9 |
CAI, T, A G STEFANOPOULOU,J B SIEGEL, Modeling Li-Ion Battery Temperature and Expansion Force during the Early Stages of Thermal Runaway Triggered by Internal Shorts[J]. Journal of The Electrochemical Society, 2019, 166(12): A2431.
|
10 |
LV, H, D KONG, P PING, G WANG, H ZHAO,X DAI, Anomaly detection of LiFePO4 pouch batteries expansion force under preload force[J]. Process Safety and Environmental Protection, 2023, 176: 1-11.
|
11 |
LI, Y, C WEI, Y SHENG, F JIAO,K WU, Swelling Force in Lithium-Ion Power Batteries[J]. Industrial & Engineering Chemistry Research, 2020, 59(27): 12313-12318.
|
12 |
ANDERSEN, H L, L DJUANDHI, U MITTAL,N SHARMA, Strategies for the Analysis of Graphite Electrode Function[J]. 2021, 11(48): 2102693.
|
13 |
BAUER, M, M WACHTLER, H STöWE, J V PERSSON,M A DANZER, Understanding the dilation and dilation relaxation behavior of graphite-based lithium-ion cells[J]. Journal of Power Sources, 2016, 317: 93-102.
|
14 |
CAI, W, Y-X YAO, G-L ZHU, C YAN, L-L JIANG, C HE, J-Q HUANG,Q ZHANG, A review on energy chemistry of fast-charging anodes[J]. Chemical Society Reviews, 2020, 49(12): 3806-3833.
|
15 |
SCHWEIDLER, S, L DE BIASI, A SCHIELE, P HARTMANN, T BREZESINSKI,J JANEK, Volume Changes of Graphite Anodes Revisited: A Combined Operando X-ray Diffraction and In Situ Pressure Analysis Study[J]. The Journal of Physical Chemistry C, 2018, 122(16): 8829-8835.
|
16 |
WENG, S, S WU, Z LIU, G YANG, X LIU, X ZHANG, C ZHANG, Q LIU, Y HUANG, Y LI, M ATEŞ, D SU, L GU, H LI, L CHEN, R XIAO, Z WANG,X WANG, Localized‐domains staging structure and evolution in lithiated graphite[J]. Carbon Energy, 2022, 5.
|
17 |
SCHMITT, J, B KRAFT, J P SCHMIDT, B MEIR, K ELIAN, D ENSLING, G KESER,A JOSSEN, Measurement of gas pressure inside large-format prismatic lithium-ion cells during operation and cycle aging[J]. Journal of Power Sources, 2020, 478: 228661.
|
18 |
PADHI, A K, K S NANJUNDASWAMY,J B GOODENOUGH, Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries[J]. Journal of The Electrochemical Society, 1997, 144(4): 1188.
|
19 |
CLERICI, D, F MOCERA,A J J o P S SOMà, Electrochemical–mechanical multi-scale model and validation with thickness change measurements in prismatic lithium-ion batteries[J]. 2022.
|
20 |
DIDIER, C, W K PANG, Z GUO, S SCHMID,V K PETERSON, Phase Evolution and Intermittent Disorder in Electrochemically Lithiated Graphite Determined Using in Operando Neutron Diffraction[J]. Chemistry of Materials, 2020, 32(6): 2518-2531.
|
21 |
HAN, B, Y ZOU, G XU, S HU, Y KANG, Y QIAN, J WU, X MA, J YAO, T LI, Z ZHANG, H MENG, H WANG, Y DENG, J LI,M GU, Additive Stabilization of SEI on Graphite Observed Using Cryo-Electron Microscopy[J]. Energy & Environmental Science, 2021, 14.
|
22 |
刘晓梅, 姚斌, 谢乐琼, 胡乔, 王莉, 何向明. 磷酸铁锂动力电池常温循环衰减机理分析[J]. 储能科学与技术, 2021, 10(4): 1338-1343.
|
|
LIU X M, YAO B, XIE L Q, HU Q, WANG L, HE X M. Analysis of the capacity fading mechanism in lithium iron phosphate power batteries cycled at ambient temperatures[J]. Energy Storage Science and Technology, 2021, 10(4): 1338-1343.
|