1 |
朱亮, 严长青, 倪涛来. 锂离子电池预锂化技术的研究现状[J]. 电池, 2018, 48(3): 206-209.
|
|
ZHU L, YAN C Q, NI T L. Research status quo of prelithiation technology for Li-ion battery[J]. Battery Bimonthly, 2018, 48(3): 206-209.
|
2 |
田孟羽, 詹元杰, 闫勇, 等 . 锂离子电池补锂技术[J]. 储能科学与技 术, 2021, 10(3): 800-812.
|
|
TIAN M Y, ZHAN Y J, YAN Y, et al. Replenishment technology of the lithium ion battery[J]. Energy Storage Science and Technology, 2021, 10(3): 800-812.]
|
3 |
LIU X M, WU Z, XIE L Q, et al. Prelithiation enhances cycling life of lithium-ion batteries: A mini review[J]. Energy \& Environmental Materials, 2023, 6(6): e12501.
|
4 |
HOLTSTIEGE F, WILKEN A, WINTER M, et al. A route to differentiate between capacity Losses and active lithium losses in lithium-ion batteries[J]. Phys Chem Chem Phys, 2017, 19: 25905–25918.
|
5 |
CAO M Y, LIU Z P, ZHANG X, et al. Feasibility of prelithiation in LiFePO4[J]. Advanced Functional Materials, 2023, 33(9): 2210032.
|
6 |
黄晓伟, 李少鹏, 张校刚. 负极补锂锂化裕度对电芯性能的影响及机理研究[J]. 储能科学与技术, 2023, 12(9): 2727-2734.
|
|
HUANG X W, LI S P, ZHANG X G. Research on the impact and mechanism of the lithium replenishment degree of anode prelithiation on the performance of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(9): 2727-2734.
|
7 |
赵鹤, 韩策, 程小露, 等. 采用阳极预锂化技术的锂离子电池高倍率老化容量衰减机理研究[J]. 储能科学与技术, 2021, 10(2): 454-461.
|
|
ZHAO H, HAN C, CHENG X L, et al. Research on the capacity ading mechanism of high rate aged lithium-ion batteries with anode prelithiation treatment[J]. Energy Storage Science and Technology, 2021, 10(2): 454-461.
|
8 |
WANG F, WANG B, LI J X, et al. Prelithiation: A crucial strategy for boosting the practical application of next-generation lithium ion battery[J]. ACS Nano, 2021, 15(2): 2197-2218.
|
9 |
AUGUSTINE A M, SUDARSANAN V, RAVINDRAN P. Suppressing the initial capacity fade in Li-rich Li5FeO4 with anionic redox by partial Co substitution–a first-principles study[J]. Sustainable Energy & Fuels, 2023, 7(6): 1502-1521.
|
10 |
HUANG G X, LIANG J N, ZHONG X G, et al. Boosting the capability of Li2C2O4 as cathode pre-lithiation additive for lithiumion batteries[J]. Nano Research, 2023, 16(3): 3872-3878.
|
11 |
PARK K, YU B C, GOODENOUGH J B. Li3N as a cathode additive for high-energy-density lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6(10): 1502534.
|
12 |
ZHU B, WEN N, WANG J, et al. Defect engineering of air-stable Li5FeO4 towards an ultra-high capacity cathode prelithiation additive[J]. Chemical Science, 2024, 15(32): 12879-12888.
|
13 |
WANG D, WANG J, LI X, et al. Enhanced prelithiation performance of Li5FeO4 cathode additive and optimized solid electrolyte interface enabled by Mn substitution[J]. Journal of Alloys and Compounds, 2024, 992: 174607.
|
14 |
SONG Z H, FENG K, ZHANG H Z, et al. "Giving comes before receiving": High performance wide temperature range Li-ion battery with Li5V2(PO4)3 as both cathode material and extra Li donor[J]. Nano Energy, 2019, 66: 104175.
|
15 |
LIU X, LIU J, PENG J, et al. Addressing the initial lithium loss of lithium ion batteries by introducing pre-lithiation reagent Li5FeO4/C in the cathode side[J]. Electrochimica Acta, 2024, 481: 143918.
|
16 |
SU X, LIN C K, WANG X P, et al. A new strategy to mitigate the initial capacity loss of lithium ion batteries[J]. Journal of Power Sources, 2016, 324: 150-157.
|
17 |
GORELIK V S, VODCHITS A I, BI D, et al. Raman scattering in LiOH and LiOD polycrystals[J]. Inorganic Materials, 2019, 55(3):271-276.
|
18 |
曾林勇. 富锂化合物正极补锂添加剂的制备及电化学性能的研究 [D]. 广州: 广东工业大学, 2022.
|
|
ZENG L Y. Study on preparation and electrochemical performance of lithium-rich compound as positive electrode lithium supplement additive[D].Guangzhou: Guangdong University of Technology, 2022.
|
19 |
NIU L, WU M, ZHANG Y, et al. Surface phosphorylated Li5FeO4 prelithiation additive synergistically improves the air-stability and lithium-ion conductivity[J]. Chemical Engineering Journal, 2024, 498: 155242.
|
20 |
LI J, ZHU B, LI S H, et al. Air-stable Li6CoO4@Li5FeO4 prelithiation reagent in cathode enabling high performance lithiumion batteries[J]. Journal of the Electrochemical Society, 2021, 168 (8): 080510.
|
21 |
ZHANG L H, DOSE W M, VU A D, et al. Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4[J]. Journal of Power Sources, 2018, 400: 549-555.
|
22 |
LIANG L, LUO J, CHEN M, et al. Synthesis and characterization of novel cathode material Li5FeO4 for Li-ion batteries[J]. International Journal of Electrochemical Science, 2013, 8(5): 6393-6398.
|
23 |
ZHU B, ZHANG W, WANG Q, et al. Understanding the Air‐Exposure Degradation Chemistry of the Sacrificial Cathode Additive Li5FeO4 for Li‐Ion Batteries[J]. Advanced Functional Materials, 2024, 34(22): 2315010.
|
24 |
LEE S W, KIM H K, KIM M S, et al. A study of the effects of synthesis conditions on Li5FeO4/carbon nanotube composites[J]. Scientific Reports, 2017, 7(1): 46530.
|
25 |
ZHANG R, YANG S, LI H, et al. Air sensitivity of electrode materials in Li/Na ion batteries: issues and strategies[J]. InfoMat, 2022, 4(6): e12305.
|