• •
收稿日期:
2025-01-06
修回日期:
2025-01-17
通讯作者:
冯国会
E-mail:lyt199542@163.com;fengguohui888@163.com
作者简介:
刘彦廷(1995—),男,博士研究生,研究方向:可再生能源应用,E-mail:lyt199542@163.com。
基金资助:
Yanting LIU(), Guohui FENG(
), Shasha CHANG, Yuqian CHENG, Yuming DING
Received:
2025-01-06
Revised:
2025-01-17
Contact:
Guohui FENG
E-mail:lyt199542@163.com;fengguohui888@163.com
摘要:
随着电动汽车渗透率的持续增长,大规模电动汽车介入对电网稳定性造成一定影响。为了更好消纳波动性较强的可再生能源,同时满足不确定的电动汽车充电需求。本文将储能技术与风力、光伏、电网技术相结合并构建了一套可再生能源系统。通过蒙特卡洛抽样方法刻画电动汽车的无序充电行为,将MATLAB与TRNSYS进行耦合并构建系统动态仿真模型。提出了衡量系统性能的评估框架,评估了系统在不同时间跨度、不同技术形式、不同调控策略的综合性能。最后基于三种系统调控策略进行了分析。结果表明,在引入储能技术后,系统全年的能量匹配指标最大提升48.20%,灵活性指标最大降低37.77%,环境效益指标最大降低6.59%。通过有序充电调控,系统的现场能量比(OEF)为66.71%,现场能量匹配(OEM)为73.20%,电网集成水平(GIL)为33.29%,电网净交互水平(NIL)为52.63%。该技术形式可有效实现负荷调控并缓解电网压力,改善电动汽车负荷扰动所带来的供需不匹配问题,降低了需求侧对电网的依赖程度。
刘彦廷, 冯国会, 常莎莎, 程昱茜, 丁雨鸣. 基于电动汽车无序充电行为的可再生能源系统综合评估及调控策略研究[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0015.
Yanting LIU, Guohui FENG, Shasha CHANG, Yuqian CHENG, Yuming DING. Research on Comprehensive Evaluation and Regulation Strategy of Renewable Energy System Based on Disordered Charging Behavior of Electric Vehicles[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0015.
1 | 国务院. 国务院关于印发2030年前碳达峰行动方案的通知[EB/OL]. [2021-10-24]. https://www.gov.cn/zhengce/zhengceku/2021-10/26/content_5644984.htm. |
2 | 刘连德,何江,周家旭,等.含高比例风光发电的电力系统中抽蓄电站的优化控制策略[J].储能科学与技术,2022,11(07):2197-2205. DOI:10.19799/j.cnki.2095-4239.2021.0696. |
LIU L D, HE J, ZHOU J X, et al. Optimization control strategy of pumped storage station in power system with high proportion wind/photovoltaic power[J]. Energy Storage Science and Technology, 2022,11(07):2197-2205. DOI:10.19799/j.cnki.2095-4239.2021.0696. | |
3 | 张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008,(07):1-9. |
ZHANG W L, QIU M, LAI X K. Application of Energy Storage Technologies in Power Grids[J]. Power System Technology, 2008, (07):1-9. | |
4 | WANG S, LI F T, ZHANG Y, et al. A method for selecting the type of energy storage for power systems with high penetration of renewable energy with multi-application scenarios [J]. Renewable Energy, 2024, 235: 121343. DOI: 10.1016/j.renene.2024.121343. |
5 | LIN B Q, LIU Z W. Assessment of flexible coal power and battery energy storage system in supporting renewable energy[J]. Energy, 2024, 313: 133805. DOI: 10.1016/j.energy.2024.133805. |
6 | CALISE F, FABOZZI S, VANOLI L, et al. A sustainable mobility strategy based on electric vehicles and photovoltaic panels for shopping centers[J]. Sustainable Cities and Society, 2021, 70: 102891. DOI: 10.1016/j.scs.2021.102891. |
7 | FACHRIZAL R, QIAN K, LINDBERG O, et al. Urban-scale energy matching optimization with smart EV charging and V2G in a net-zero energy city powered by wind and solar energy[J]. eTransportation, 2024, 20: 100314. DOI: 10.1016/j.etran.2024.100314. |
8 | ZHAO K, ZHENG K J, SHEN C, et al. Configuration optimization and performance analysis of hybrid PV/wind systems in building groups[J]. Journal of Building Engineering, 2024, 97: 110696. DOI: 10.1016/j.jobe.2024.110696. |
9 | YAHYA W, SAIED K M, NASSAR A, et al. Optimization of a hybrid renewable energy system consisting of a of PV/wind turbine/battery/fuel cell integration and component design[J]. International Journal of Hydrogen Energy, 2024, 94: 1406-18. DOI: 10.1016/j.ijhydene.2024.11.187. |
10 | 蒋林洳,万伟江,丁霄寅,等.一种基于直接蒙特卡洛法的电动汽车充电负荷模型[J].供用电,2018,35(04):20-25+13. DOI:10.19421/j.cnki.1006-6357.2018.04.004. |
JIANG L R, WAN W J, DING X Y, et al. Electric vehicle charging load model based on direct Monte-Carlo method[J]. Distribution & Utilization, 2018,35(04):20-25+13. DOI:10.19421/j.cnki.1006-6357.2018.04.004. | |
11 | 周晓薇, 陈昕儒. 基于离网型微网的电动汽车消纳可再生能源研究[J]. 电工电气, 2017(06): 25-30. |
ZHOU X W, CHEN X R. Research on electric vehicle in renewable energy sources based on Islanded microgrid[J]. Electrotechnics Electric, 2017(06): 25-30. | |
12 | 王浩林, 张勇军, 毛海鹏. 基于时刻充电概率的电动汽车充电负荷预测方法[J]. 电力自动化设备, 2019, 39(03): 207-213. DOI:10.16081/j.issn.1006-6047.2019.03.033. |
WANG H L, ZHANG Y J, MAO H P. Charging load forecasting method based on instantaneous charging probability for electric vehicles [J]. Electric Power Automation Equipment, 2019, 39(03): 207-213. DOI:10.16081/j.issn.1006-6047.2019.03.033. | |
13 | 乔珊.主动配电网多源协同运行优化研究[D].山东:山东大学,2021. DOI:10.27272/d.cnki.gshdu.2021.004989. |
QIAO S. Research on multi-source cooperative operation optimization of active distribution network[D]. Shandong: Shandong university, 2021. DOI:10.27272/d.cnki.gshdu.2021.004989. | |
14 | 刘效辰,刘晓华,张涛,等.建筑区域广义储能资源的刻画与设计方法[J].中国电机工程学报,2024,44(06):2171-2185. DOI:10.13334/j.0258-8013.pcsee.222949. |
LIU X C, LIU X H, ZHANG T, et al. Characterization and Design Method of Generalized Energy Storage Resources in or Around Buildings[J]. Proceedings of the CSEE, 2024,44(06):2171-2185. DOI:10.13334/j.0258-8013.pcsee.222949. | |
15 | ZHAI R R, LIU H T, CHEN Y, et al. The daily and annual technical-economic analysis of the thermal storage PV-CSP system in two dispatch strategies[J]. Energy Conversion and Management, 2017, 154: 56-67. DOI: 10.1016/j.enconman.2017.10.040. |
16 | LIU H T, ZHAI R R, PATCHIGOLLA K, et al. Multi-objective optimisation of a thermal-storage PV-CSP-wind hybrid power system in three operation modes[J]. Energy, 2023, 284: 129255. DOI: 10.1016/j.energy.2023.129255. |
17 | NIVEDITHA N, SINGARAVEL M M R. Optimal sizing of PV–Wind generators with a smart EV charging framework to build grid friendly Net Zero Energy Campus[J]. Sustainable Cities and Society, 2024, 111: 105575. DOI: 10.1016/j.scs.2024.105575. |
18 | LI Y X, SENTHIL KUMAR G M, CAO S L, et al. Electric vehicle-based distant energy sharing between zero-emission coastal office and hotel buildings[J]. Journal of Building Engineering, 2024, 90: 109496. DOI: 10.1016/j.jobe.2024.109496. |
19 | CAO S L. The impact of electric vehicles and mobile boundary expansions on the realization of zero-emission office buildings[J]. Applied Energy, 2019, 251: 113347. DOI: 10.1016/j.apenergy.2019.113347. |
20 | YAN R J, LU Z R, WANG J J, et al. Stochastic multi-scenario optimization for a hybrid combined cooling, heating and power system considering multi-criteria[J]. Energy Conversion and Management, 2021, 233:113911. DOI: 10.1016/j.enconman.2021.113911. |
21 | HUTCHINSON A, GLADWIN D T. Optimisation of a wind power site through utilisation of flywheel energy storage technology[J]. Energy Reports, 2020, 6: 259-65. DOI: 10.1016/j.egyr.2020.03.032. |
22 | WANG M, YU H, JING R, et al. Combined multi-objective optimization and robustness analysis framework for building integrated energy system under uncertainty[J]. Energy Conversion and Management, 2020, 208: 112589. DOI: 10.1016/j.enconman.2020.112589. |
23 | SALAMA H S, VOKONY I. Comparison of different electric vehicle integration approaches in presence of photovoltaic and superconducting magnetic energy storage systems[J]. Journal of Cleaner Production, 2020, 260: 121099. DOI: 10.1016/j.jclepro.2020.121099. |
24 | ZHOU L, ZHOU Y K. Study on thermo-electric-hydrogen conversion mechanisms and synergistic operation on hydrogen fuel cell and electrochemical battery in energy flexible buildings[J]. Energy Conversion and Management, 2023, 277: 116610. DOI: 10.1016/j.enconman.2022.116610. |
25 | KUMAR G M S, CAO S L. Leveraging energy flexibilities for enhancing the cost-effectiveness and grid-responsiveness of net-zero-energy metro railway and station systems[J]. Applied Energy, 2023, 333: 120632. DOI: 10.1016/j.apenergy.2022.120632. |
26 | 陈海东,蒙飞,王庆,等.储能系统和新能源发电装机容量对电力系统性能的影响[J].储能科学与技术,2023,12(02):477-485. |
CHEN H D, MENG F, WANG Q, et al. Influence of installed capacity of energy storage system and renewable energy power generation on power system performance[J]. Energy Storage Science and Technology, 2023,12(02):477-485. DOI: 10.19799/j.cnki.2095-4239.2022.0439. |
[1] | 陈星光, 沈逸凡, 邵裕新, 郑岳久, 孙涛, 来鑫, 沈凯, 韩雪冰. 面向实车应用的磷酸铁锂电池容量辨识及特异性优化方法研究[J]. 储能科学与技术, 2024, 13(9): 2963-2971. |
[2] | 袁誉杭, 高宇辰, 张俊东, 高岩斌, 王超珑, 陈翔, 张强. 大语言模型在储能研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2907-2919. |
[3] | 刘大猛, 牟雪鹏, 石博豪, 陈巨龙, 王斌, 罗晨, 钟承君, 陈思哲. 斜坡式重力储能系统机械与电气联合仿真的多软件协同建模方法[J]. 储能科学与技术, 2024, 13(9): 3266-3276. |
[4] | 黄家辉, 邝祝芳. 人工智能与储能技术融合的前沿发展[J]. 储能科学与技术, 2024, 13(9): 3161-3181. |
[5] | 许晶, 王宇琦, 符晓, 杨其凡, 连景臣, 王力奇, 肖睿娟. 基于大数据的电池新材料设计[J]. 储能科学与技术, 2024, 13(9): 2920-2932. |
[6] | 邓斌, 华海明, 张与之, 王晓旭, 张林峰. 深度势能方法及其在电化学储能材料中的应用[J]. 储能科学与技术, 2024, 13(9): 2884-2906. |
[7] | 栗占伟, 樊东方, 曾超, 何雯倩, 何金. 考虑风光消纳的储能系统容量优化配置及运行策略研究[J]. 储能科学与技术, 2024, 13(8): 2713-2725. |
[8] | 李玉光, 刘翔, 梁艳召, 刘双振. 飞轮储能装置在轨道交通中的应用研究[J]. 储能科学与技术, 2024, 13(8): 2679-2686. |
[9] | 周茜茜, 黄勇, 崔可, 孙大南. 飞轮储能装置电机温度场仿真技术研究及试验验证[J]. 储能科学与技术, 2024, 13(8): 2589-2596. |
[10] | 陈晔, 李晋, 吴候福, 张少禹, 储玉喜, 卓萍. 大容量储能电池模组热失控传播行为与燃爆风险分析[J]. 储能科学与技术, 2024, 13(8): 2803-2812. |
[11] | 柳长发, 付立衡, 张增丽, 李宏胜, 古敬彬. 高比例光伏接入的分布式储能容量自适应协调控制方法[J]. 储能科学与技术, 2024, 13(8): 2696-2703. |
[12] | 李澎煜, 林曦鹏, 王亮, 陈海生, 王艺斐. 竖直波纹流道内超临界氮气流动与传热研究[J]. 储能科学与技术, 2024, 13(8): 2605-2614. |
[13] | 李震, 陈巨龙, 李文林, 张裕, 杨婕睿, 陈思哲. 提升斜坡式重力储能AGC性能的混合储能优化运行方法[J]. 储能科学与技术, 2024, 13(8): 2761-2771. |
[14] | 李永奇, 杜蕴, 方振华, 张松通, 祝夏雨, 胡海良, 邱景义, 明海. 军用新能源微电网系统的运维及故障处置分析[J]. 储能科学与技术, 2024, 13(8): 2740-2757. |
[15] | 朱文韬, 周杨, 徐艺敏, 施涛. 电池储能技术在新能源发电系统中的应用与优化[J]. 储能科学与技术, 2024, 13(8): 2737-2739. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||