储能科学与技术

• XXXX •    

层状氧化物钠离子电池模组过充热失控多物理场行为分析

郭鹏宇1(), 吴静云2, 周显威3, 鄢博2   

  1. 1.国网江苏省电力有限公司,江苏 南京 210000
    2.国网江苏省电力有限公司经济技术研究院,江苏 南京 210008
    3.国网江苏综合能源服务有限公司,江苏 南京,210004
  • 收稿日期:2025-08-15 修回日期:2025-09-05
  • 通讯作者: 郭鹏宇 E-mail:13611511237@163.com
  • 作者简介:第一联系人:郭鹏宇;
  • 基金资助:
    国网江苏省电力公司科技项目(J2024099)

Multiphysics Analysis of Thermal Runaway in Layered Oxide Sodium-ion Battery Modules under Overcharging Conditions

Pengyu GUO1(), Jingyun WU2, Xianwei ZHOU3, Bo YAN2   

  1. 1.State Grid Jiangsu Electric Power Company, Nanjing 210000, Jiangsu, China
    2.State Grid Jiangsu Electric Power Company Economic and Technical Research Institute, Nanjing 210008, Jiangsu, China
    3.State Grid Jiangsu Integrated Energy Service Co. , Ltd. , Nanjing Jiangsu 210004, China
  • Received:2025-08-15 Revised:2025-09-05
  • Contact: Pengyu GUO E-mail:13611511237@163.com

摘要:

本研究旨在应对钠离子电池在大型储能系统中日益增长的安全挑战,通过对一个由13个185Ah方形电芯串联组成的模组进行0.5C过充滥用实验,系统分析了其热失控的多物理场失效过程。实验结果揭示了一个由电、化、热、力多场耦合驱动的链式失效机理,其最早的前兆信号是内部膨胀力的缓慢线性增长,这由过充诱发的局部副反应产气所致,远早于任何显著的电学或热学异常 。随着过充的持续,各单体电芯电压曲线开始出现明显分化,标志着模组内部不一致性的加剧和损伤的累积。最终,一个作为“薄弱环节”的电芯因损伤累积达到临界点而发生内部短路,表现为电压的瞬时崩溃和温度的指数级飙升,从而触发了热失控。该单点的灾难性失效释放出巨大热量,随即以“多米诺骨牌”的形式引发了相邻电芯的连锁热蔓延,在短时间内摧毁了整个模组。综上,本研究证实了钠离子电池模组“局部触发、全局破坏”的失效模式,并凸显了内部压力监测作为最早期预警信号的关键价值,为未来更安全的电池管理系统和储能系统设计提供了重要的理论依据与数据支持。

关键词: 钠离子电池模组, 热失控行为, 电滥用

Abstract:

This study aims to address the escalating safety challenges of sodium-ion batteries in large-scale energy storage systems. By conducting a 0.5C overcharge abuse test on a module composed of thirteen 185Ah prismatic cells connected in series, the multiphysics failure process of its thermal runaway was systematically analyzed. The experimental results reveal a chain-reaction failure mechanism driven by the coupling of electrical, chemical, thermal, and mechanical fields. The earliest precursor signal was identified as a slow, linear increase in internal expansion force, which was attributed to gas generation from localized side reactions induced by overcharging. This signal appeared significantly earlier than any notable electrical or thermal anomalies. As the overcharge continued, the voltage curves of individual cells began to diverge, indicating an escalation in internal inconsistency and cumulative damage within the module. Ultimately, a single "weak link" cell experienced an internal short circuit upon reaching a critical damage threshold, manifested by an instantaneous voltage collapse and an exponential temperature surge, thereby triggering thermal runaway. The catastrophic failure of this single point released immense heat, which subsequently initiated a domino-like thermal propagation to adjacent cells, leading to the destruction of the entire module within a short period. In summary, this research substantiates the "local trigger, global destruction" failure mode for sodium-ion battery modules. Furthermore, it highlights the critical value of internal pressure monitoring as the earliest warning indicator, providing a significant theoretical basis and empirical data to support the design of safer Battery Management Systems and energy storage systems in the future.

Key words: Sodium-ion battery module, thermal runaway, electrical abuse

中图分类号: