[1] |
YANG Y, BREMNER S, MENICTAS C, et al. Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112671.
|
[2] |
WANG Q, MAO B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131.
|
[3] |
GAGNON L, ZENG D, DITCH B, et al. Cell-level thermal runaway behavior of large-format Li-ion pouch cells[J]. Fire safety journal, 2023, 140: 103904.
|
[4] |
陈晔,李晋,赵瑞兰,等.不同荷电状态下电池模组热失控传播对比试验研究[J/OL].储能科学与技术,1-13[2025-08-02].https://doi.org/10.19799/j.cnki.2095-4239.2025.0071.
|
|
CHEN Y, LI J, ZHAO R, et al. Comparative experimental study on thermal runaway propagation in battery modules under different states of charge[J/OL]. Energy Storage Science and Technology, 1-13 [2025-08-02]. https://doi.org/10.19799/j.cnki.2095-4239.2025.0071.
|
[5] |
张雪奎,张振东,盛雷,等.储能用锂电池模组的浸没式热安全性能试验研究[J/OL].储能科学与技术,1-10[2025-08-02].https://doi.org/10.19799/j.cnki.2095-4239.2025.0464.
|
|
ZHANG X, ZHANG Z, SHENG L, et al. Experimental study on submerged thermal safety performance of lithium-ion battery modules for energy storage[J/OL]. Energy Storage Science and Technology, 1-10 [2025-08-02]. https://doi.org/10.19799/j.cnki.2095-4239.2025.0464.
|
[6] |
梁坤峰,宋乂天,周训,等.磷酸铁锂电池模组热失控及蔓延特性[J/OL].电池,1-8[2025-08-02].https://link.cnki.net/urlid/43.1129.TM.20250320.1519.002.
|
|
LIANG K, SONG Y, ZHOU X, et al. Thermal Runaway and Propagation Characteristics of Lithium Iron Phosphate Battery Modules[J/OL]. Battery, 1-8 [2025-08-02]. https://link.cnki.net/urlid/43.1129.TM.20250320.1519.002.
|
[7] |
MOHADDES D, WANG Y. Theory and analysis of module-scale thermal runaway propagation[J]. Combustion and Flame, 2025, 279: 114327.
|
[8] |
CHU S, GUO S, ZHOU H. Advanced cobalt-free cathode materials for sodium-ion batteries[J]. Chemical Society Reviews, 2021, 50(23): 13189-13235.
|
[9] |
ZHAO Y, LIU Q, ZHAO X, et al. Structure evolution of layered transition metal oxide cathode materials for Na-ion batteries: Issues, mechanism and strategies[J]. Materials Today, 2023, 62: 271-295.
|
[10] |
PENG B, ZHOU Z, SHI J, et al. Earth‐Abundant Fe‐Mn‐Based Compound Cathodes for Sodium‐Ion Batteries: Challenges and Progress[J]. Advanced Functional Materials, 2024, 34(19): 2311816.
|
[11] |
CHEN S, GAO Z, Sun T. Safety challenges and safety measures of Li‐ion batteries[J]. Energy science & engineering, 2021, 9(9): 1647-1672.
|
[12] |
ROWDEN B, GARCIA-ARAEZ N. A review of gas evolution in lithium ion batteries[J]. Energy Reports, 2020, 6: 10-18.
|
[13] |
FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy storage materials, 2018, 10: 246-267.
|
[14] |
LIN S, LI W, QIN Y, et al. Deciphering thermal failure mechanism of Sodium-Ion battery with O3-phase layered cathode[J]. Chemical Engineering Journal, 2025, 506: 160202.
|
[15] |
宋毓聪,郭跃,崔佳斌,等.大容量锂电池模组过充热失控分析[J].时代汽车,2024,(06):135-137+148.
|
|
SONG, Y. C., GUO, Y., CUI, J. B., et al. (2024). Analysis of overcharge-induced thermal runaway in high-capacity lithium-Ion battery modules. Auto Time, (6), 135–137, 148.
|
[16] |
余帆,刘泽瑞,李元洲,等.船用磷酸铁锂电池组过充热失控过程研究[J].船电技术,2025,45(05):36-38.DOI:10.13632/j.meee.2025.05.012.
|
|
YU, F., LIU, Z. R., LI, Y. Z., et al. (2025). Research on overcharge-induced thermal runaway process of LFP battery packs for marine applications. Marine Electric & Electronic Engineering, 45(5), 36–38. DOI: 10.13632/j.meee.2025.05.012.
|