[1] |
Hu W, Duan Y, Li D, et al. Optimizing the indoor thermal environment and daylight performance of buildings with PCM glazing[J]. Energy and Buildings, 2024, 318: 114481.
|
[2] |
LOSI G, BONZANINI A, AQUINO A, et al. Analysis of thermal comfort in a football stadium designed for hot and humid climates by CFD[J]. Journal of Building Engineering, 2021, 33: 101599.
|
[3] |
牛红培.相变储能材料在节能建筑设计中的应用[J].储能科学与技术,2024,13(03):847-849.
|
|
NIU Hongpei. Research on the application of phase change energy storage materials in energy saving building design[J]. Energy Storage Science and Technology, 2024,13(03):847-849.
|
[4] |
TAN Q, SIROUX M. Evaluation and optimization of PCM-integrated walls: energy, exergy, environmental, and economic perspectives[J]. Renewable and Sustainable Energy Reviews, 2025, 222: 115922.
|
[5] |
VIGHNESH R, PAROL V, ANAND K B. Optimized parameters for novel shape stabilized PCM into porous vermiculite integrated in concrete roofings-a sustainable approach[J]. Construction and Building Materials, 2025, 490: 142566.
|
[6] |
XIAO J, ZOU B, LIU C, Et al. Carbonized loofah sponge fragments enhanced phase change thermal energy storage: Preparation and thermophysical property analysis[J]. Applied Thermal Engineering, 2024,242: 122505.
|
[7] |
张新宇,罗声豪,吴颖欣,等.复合相变材料用于锂离子电池热管理和热失控防护研究进展[J].储能科学与技术, 2025,14(03):1040-1053.
|
|
ZHANG X, LUO S, WU Y, et al. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries[J]. Energy Storage Science and Technology, 2025,14(03):1040-1053.
|
[8] |
XIAO J, ZOU B, ZHONG F, ET AL. Phase change energy storage using boron nitride/carbonized loofah sponge[J]. Applied Thermal Engineering, 2024, 257:124182.
|
[9] |
朱郑洋,李小姗,罗聪,等.基于二元双峰相变储热材料的电池热管理系统及其热适应性研究[J/].洁净煤技术,1-11[2025-09-21].https://link.cnki.net/urlid/11.3676.TD.20250508.1115.012.
|
|
Zhu Z Y, Li X S, Luo C, et al. Investigations on thermal adaptability of battery thermal management system based on binary double-peak phase change materials[J]. Clean Coal Technology, 2025: 1-11. (2025-05-08). https://link.cnki.net/urlid/11.3676.TD.20250508.1115.012.
|
[10] |
孟凡康,彭栋坤,蔡鹏.严寒地区相变日光温室蓄放热性能模拟研究[J].储能科学与技术,2025,14(06):2532-2539.
|
|
MENG F, PENG D, CAI P. Simulation of the heat storage and release performance of a phase-change solar greenhouse in a severely cold area[J]. Energy Storage Science and Technology, 2025,14(06):2532-2539.
|
[11] |
WANG R, PEI Y, GU Y, et al. Improved biohydrogen evolution by activated carbon derived from cigarette butts[J]. International Journal of Hydrogen Energy, 2025, 115: 49-59.
|
[12] |
MUTHANNA J, BASSIM H, MOONIS A. Recent progress on carbonaceous materials-based adsorbents derived from cigarette wastes for sustainable remediation of aquatic pollutants: A review[J]. Journal of Analytical and Applied Pyrolysis, 2024, 183: 106779.
|
[13] |
LIU C, WANG J, ZHANG S, et al. Ultramicropore-rich N-doped porous biochar from discarded cigarette butts for efficient CO2 capture with ultra-high adsorption capacity and selectivity[J]. Separation and Purification Technology, 2025, 358: 130205. DOI:10.1016/j.seppur.2024.130205
|
[14] |
YANG P, YANG L. Top-down hydrothermal carbonization of discarded cigarette butts for optimizing ammonia adsorption performance of carbon microsphere materials[J]. Separation and Purification Technology, 2025, 369: 132997. DOI: 10.1016/j.seppur.2025.132997.
|
[15] |
ZHANG Q, CHENG Y, FANG C, et al. Facile synthesis of porous carbon/Fe3O4 composites derived from waste cellulose acetate by one-step carbothermal method as a recyclable adsorbent for dyes[J]. Journal of Materials Research and Technology, 2020, 9(3): 3384-3393.
|
[16] |
LI P, CHEN Y, LIN Y, et al. Research progress on the preparation of high-value carbon materials by biomass pyrolysis[J]. Biomass and Bioenergy, 2025, 193: 107520.
|
[17] |
JANKOVIĆ B, KOJIĆ M, MILOŠEVIĆ M, et al. Upcycling of the used cigarette butt filters through pyrolysis process: detailed kinetic mechanism with bio-char characterization[J]. Polymers, 2023, 15(14): 3054.
|
[18] |
GUO Z, HAN X, ZHANG C, et al. Activation of biomass-derived porous carbon for supercapacitors: A review[J]. Chinese Chemical Letters, 2024, 35: 109007.
|
[19] |
MOTA-RESENDIZ K, SÁNCHEZ-SILVA J M, FORGIONNY A, et al. Valorization of waste cigarette butts into high-performance activated carbons for water remediation[J]. Journal of Water Process Engineering, 2025, 75: 107998.
|
[20] |
ZHANG X, YU M, LI Y, et al. Effectiveness of discarded cigarette butts derived carbonaceous adsorbent for heavy metals removal from water[J]. Microchemical Journal, 2021, 168: 106474.
|
[21] |
LI L, JIA C, ZHU X, et al. Utilization of cigarette butt waste as functional carbon precursor for supercapacitors and adsorbents[J]. Journal of Cleaner Production, 2020, 256: 120326.
|
[22] |
HEKIMOĞLU G, SARI A, ARUNACHALAM S, et al. Porous biochar/heptadecane composite phase change material with leak-proof, high thermal energy storage capacity and enhanced thermal conductivity[J]. Powder Technology, 2021, 394: 1017-1025.
|
[23] |
DALMAZ A, SİVRİKAYA ÖZAK S. Methylene blue dye efficient removal using activated carbon developed from waste cigarette butts: adsorption, thermodynamic and kinetics[J]. Fuel, 2024, 372: 132151.
|
[24] |
方钰涵, 钟湘宇, 于皓, 等. FeCoNC碳材料增强复合相变材料热物性与储热性能研究[J]. 化工学报, DOI: 10.11949/0438-1157.20250719.
|
|
FANG Y, ZHONG X, YU H, et al. Research on the thermal physical properties and heat storage performance of FeCoNC carbon material-reinforced composite phase change materials[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250719.
|
[25] |
WEN R, LIU Y, YANG C, et al. Enhanced thermal properties of stearic acid/carbonized maize straw composite phase change material for thermal energy storage in buildings[J]. Journal of Energy Storage, 2021, 36: 102420.
|
[26] |
ZHANG Q, ZHANG Z, LI B, et al. Highly dispersed Ag quantum dots anchored on palmitic acid/ graphitic carbon nitride composite phase change materials for enhanced photo-thermal storage[J]. Journal of Alloys and Compounds, 2024, 1003: 175602.
|
[27] |
ZHOU L, WANG X, WU Q, et al. Carbon nanotube sponge encapsulated ag-MWCNTs/PW composite phase change materials with enhanced thermal conductivity, high solar-/electric-thermal energy conversion and storage[J]. Journal of Energy Storage, 2024, 84: 110925.
|
[28] |
陈莎,陈岳浩,孙小琴,等.碳基纳米石蜡复合相变储能材料制备与性能研究[J].储能科学与技术,2024,13(12):4349-4356.
|
|
CHEN Sha, CHEN Yuehao, SUN Xiaoqin, et al. Preparation and properties of nano-carbon-based composite paraffin phase-change materials[J]. Energy Storage Science and Technology,2024,13(12):4349-4356.
|
[29] |
CHANG X L, YAN T, PAN W G, et al. Synergistic enhancement of metal–organic framework-derived hierarchical porous materials towards photothermal conversion and storage properties of phase change materials[J]. Applied Thermal Engineering, 2024, 255: 124046.
|
[30] |
XIAO J, REN J, ZOU L, et al. Carbonized scrapped tire rubber to enhance thermal energy storage performance [J]. Journal of Energy Storage, 2025, 110:115276.
|
[31] |
XIAO J, ZHONG X, REN J, et al. High value-added utilization of waste asphalt: Enhance phase change energy storage performance using simple carbonization for solar energy harvesting[J]. Solar Energy Materials and Solar Cells, 2025, 282: 113434.
|