• XXXX •
李博然1,2(), 童山虎1,3,5, 王达4,5, 任晓芬1,2, 赵学敏1,2(
)
收稿日期:
2025-08-26
修回日期:
2025-09-15
通讯作者:
赵学敏
E-mail:2304448599@qq.com;1625085843@qq.com
作者简介:
李博然(2001—),男,硕士研究生(在读),研究方向:相变蓄冷,E-mail:2304448599@qq.com;
基金资助:
Boran Li1,2(), Shanhu Tong1,3,5, Da Wang4,5, Xiaofen Ren1,2, Xuemin Zhao1,2(
)
Received:
2025-08-26
Revised:
2025-09-15
Contact:
Xuemin Zhao
E-mail:2304448599@qq.com;1625085843@qq.com
摘要:
随着冷链物流规模快速增长,蓄冷式冷藏车因其节能环保特性备受关注,但蓄冷梁中相变材料的充冷速度缓慢、温度分布不均成为研究瓶颈。为此,本文创新性地提出基于拓扑优化的蓄冷板高效充冷翅片设计方法,首先利用COMSOL多物理场数值模拟,对翅片结构进行拓扑优化,然后通过参数化简化重构,兼顾高效传热与工程可制造性。研究表明,拓扑优化翅片在相同体积比(尤其5.8%)下较传统直肋型翅片传热效率提升了71.4%,简化后结构热性能偏差小于0.2°C,同时成本和加工难度大幅降低。进一步分析不同管径对相变固相率的影响,发现80mm较65mm管径的综合性能提升了10%。本研究不仅为蓄冷式冷藏车翅片设计提供了系统化优化思路,还在提高充冷效率与维护蓄冷容量平衡方面取得了突破,为低碳环保冷链运输技术的发展注入新动能。
中图分类号:
李博然, 童山虎, 王达, 任晓芬, 赵学敏. 基于拓扑优化的冷藏车蓄冷板高效充冷翅片设计[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0767.
Boran Li, Shanhu Tong, Da Wang, Xiaofen Ren, Xuemin Zhao. Research on the Optimization of Finned Charging Tubes for Cold Storage Vehicles with Thermal Energy Storage[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0767.
[1] | VRAT P, GUPTA R, BHATNAGAR A, et al. Literature review analytics (LRA) on sustainable cold-chain for perishable food products: research trends and future directions[J]. Opsearch, 2018, 55(3-4): 601-627. |
[2] | KAYFECI M, KEçEBAŞ A, GEDIK E. Determination of optimum insulation thickness of external walls with two different methods in cooling applications[J]. Applied Thermal Engineering, 2013, 50(1): 217-224. |
[3] | JAMES S J, JAMES C. The food cold-chain and climate change[J]. Food Research International, 2010, 43(7): 1944-1956. |
[4] | TAN H, LI Y, TUO H, et al. Experimental study on liquid/solid phase change for cold energy storage of Liquefied Natural Gas (LNG) refrigerated vehicle[J]. Energy, 2010, 35(5): 1927-1935. |
[5] | FIORETTI R, PRINCIPI P, COPERTARO B. A refrigerated container envelope with a PCM (Phase Change Material) layer: Experimental and theoretical investigation in a representative town in Central Italy[J]. Energy Conversion and Management, 2016, 122(1): 131-141. |
[6] | BEN TAHER M A, KOUSKSOU T, ZERAOULI Y, et al. Thermal performance investigation of door opening and closing processes in a refrigerated truck equipped with different phase change materials[J]. Journal of Energy Storage, 2021, 42(1):103097. |
[7] | COPERTARO B, PRINCIPI P, FIORETTI R. Thermal performance analysis of PCM in refrigerated container envelopes in the Italian context – Numerical modeling and validation[J]. Applied Thermal Engineering, 2016, 102: 873-881. |
[8] | 李晓燕. 相变蓄冷技术在食品冷链运输中的研究进展[J]. 包装工程, 2019,40(15): 150-157. |
LI X Y Research Progress of Phase Change Materials for Cold Storage in Food Cold Chain Transportation[J]. packaging engineering, 2019,40(15): 150-157. | |
[9] | 田津津. 蓄冷板释冷过程的数值模拟和实验研究[J]. 制冷学报, 2016,37(3): 29-34. |
TIAN J J Numerical simulation and experimental study of the cooling process of the cold storage plate[J] Journal of Refrigeration, 2016,37(3): 29-34. | |
[10] | 蒋玉龙. 泡沫材料冰蓄冷板融化过程的研究[J]. 制冷学报, 2015,36(5): 65-73. |
JIANG Y L Research on the Melting Process of Foam Material Ice Storage Panels[J] Journal of Refrigeration, 2015,36(5): 65-73. | |
[11] | 范中阳. 蓄冷板摆放方式对冷链宅配过程的影响[J]. 制冷技术, 2017,37(5): 51-54. |
FAN Z Y The Influence of Cold Storage Plate Placement Method on the Cold Chain Delivery Process [J] Refrigeration Technology,2017,37(5): 51-54. | |
[12] | ZIVKOVIC. AN ANALYSIS OF ISOTHERMAL PHASE CHANGE OF PHASE CHANGE[J]. Solar Energy, 2000,70(1):51-61. |
[13] | MOUSAZADE A, RAFEE R, VALIPOUR M S. Thermal performance of cold panels with phase change materials in a refrigerated truck[J]. International Journal of Refrigeration, 2020, 120: 119-126. |
[14] | ALZUWAID F A, GE Y T, TASSOU S A, et al. The novel use of phase change materials in an open type refrigerated display cabinet: A theoretical investigation[J]. Applied Energy, 2016, 180: 76-85. |
[15] | 田绅. 嵌入热管强化相变蓄冷板释冷性能的研究及优化[J]. 制冷学报, 2021,42(6): 114-120. |
TIAN S Research and Optimization on Enhancing the Cooling Performance of Phase Change Heat Storage Plates by Integrating Heat Pipes[J].Journal of Refrigeration. 2021,42(6):114-120. | |
[16] | 童山虎. 基于相变蓄冷技术的冷链集装箱性能研究_童山虎[J]. 储能科学与技术, 2020,9(1): 211-216. |
TONG S H Research on the Performance of Cold Chain Containers Based on Phase Change Refrigeration Technology[J].Energy Storage Science and Technology, 2020,9(1): 211-216. | |
[17] | 张榜. 蓄冷板中相变材料蓄冷过程影响因素研究[J]. 制冷空调, 2024,24(12): 96-105. |
ZHANG B Research on the Influencing Factors of the Cold Storage Process of Phase Change Materials in Cold Storage Plates [J]. refrigeration air conditioner 2024,24(12): 96-105. | |
[18] | TASSOU S A, DE-LILLE G, GE Y T. Food transport refrigeration – Approaches to reduce energy consumption and environmental impacts of road transport[J]. Applied Thermal Engineering, 2009, 29(8-9): 1467-1477. |
[19] | 杨凤. 顶置蓄冷板对冷库融霜时库温波动的影响[J]. 食品与机械, 2020,36(12);85-89. |
YANG F The influence of the top-mounted cold storage plate on the temperature fluctuations in the cold storage during defrosting[J].Food and Machinery,2020,36(12):85-89. | |
[20] | 邓静. 肋片布置对相变蓄冷用冷藏车蓄冷板充冷过程的影响[J]. 流体机械, 2023,51(8): 73-79. |
DENG J The influence of fin arrangement on the cooling process of the cold storage plate used in phase change cold storage vehicles [J]. fluid machinery, 2023,51(8): 73-79. | |
[21] | AMAGOUR M E H, BENNAJAH M, RACHEK A. Numerical investigation and experimental validation of the thermal performance enhancement of a compact finned-tube heat exchanger for efficient latent heat thermal energy storage[J]. Journal of Cleaner Production, 2021, 280:124238. |
[22] | HAN P, WANG H, FAN J, et al. The local non-equilibrium heat transfer in phase change materials embedded in porous skeleton for thermal energy storage[J]. Journal of Energy Storage, 2024, 82:110450. |
[23] | HAN P, WANG J, ZHAO X, et al. Performance study of fin structure in air-cooled thermal management system for column power battery[J]. Journal of Energy Storage, 2024, 104:114679. |
[24] | YU C, WU S, HUANG Y, et al. Charging performance optimization of a latent heat storage unit with fractal tree-like fins[J]. Journal of Energy Storage, 2020, 30:101498. |
[25] | ZHANG Y, YANG X, ZOU S, et al. Enhancing the phase change material based shell-tube thermal energy storage units with unique hybrid fins[J]. International Communications in Heat and Mass Transfer, 2024, 157:107763. |
[26] | AO C, YAN S, ZHAO X, et al. Design optimization of a novel annular fin on a latent heat storage device for building heating[J]. Journal of Energy Storage, 2023, 64:107124. |
[27] | AL-MUDHAFAR A H N, NOWAKOWSKI A F, NICOLLEAU F C G A. Enhancing the thermal performance of PCM in a shell and tube latent heat energy storage system by utilizing innovative fins[J]. Energy Reports, 2021, 7: 120-126. |
[28] | CHOUDHARI V G, DHOBLE A S, PANCHAL S. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization[J]. International Journal of Heat and Mass Transfer, 2020, 163:120434. |
[29] | KALAPALA L, DEVANURI J K. Influence of operational and design parameters on the performance of a PCM based heat exchanger for thermal energy storage – A review[J]. Journal of Energy Storage, 2018, 20: 497-519. |
[30] | LI C, LI Q, GE R. Assessment on the melting performance of a phase change material based shell and tube thermal energy storage device containing leaf-shaped longitudinal fins[J]. Journal of Energy Storage, 2023, 60:106574. |
[31] | REN F, DU J, CAI Y, et al. Study on thermal performance of a new optimized snowflake longitudinal fin in vertical latent heat storage[J]. Journal of Energy Storage, 2022, 50:104165. |
[32] | SHAHSAVAR A, GOODARZI A, MOHAMMED H I, et al. Thermal performance evaluation of non-uniform fin array in a finned double-pipe latent heat storage system[J]. Energy, 2020, 193:116800. |
[33] | PANDEY V, LEE P S. Maximizing liquid-cooled heat sink efficiency with advanced topology-optimized fin designs[J]. International Journal of Heat and Mass Transfer, 2024, 229:125746. |
[34] | YANG X, NIU Z, BAI Q, et al. Experimental study on the solidification process of fluid saturated in fin-foam composites for cold storage[J]. Applied Thermal Engineering, 2019, 161:114163. |
[35] | PETROVIC M, FUKUI K, KOMINAMI K. Numerical and experimental performance investigation of a heat exchanger designed using topologically optimized fins[J]. Applied Thermal Engineering, 2023, 218:119232. |
[36] | ZHAO Y, MOU X, CHEN Z, et al. Topology optimization and bionic analysis of heat sink fin configuration based on additive manufacturing technology[J]. International Communications in Heat and Mass Transfer, 2024, 155:107544. |
[37] | LOHAN D J, DEDE E M, ALLISON J T. A study on practical objectives and constraints for heat conduction topology optimization[J]. Structural and Multidisciplinary Optimization, 2019, 61(2): 475-489. |
[1] | 高启发, 张楠, 张兆利, 杜雁霞, 袁艳平. 不同力场下泡沫铜对相变材料传热及控温特性的影响[J]. 储能科学与技术, 2025, 14(9): 3301-3310. |
[2] | 袁艳平, 高启发, 张楠, 孙钦荣. 非均匀泡沫铜强化相变材料蓄热特性的数值分析[J]. 储能科学与技术, 2025, 14(8): 3100-3109. |
[3] | 刘涛涛, 张少朋, 王艺斐, 林曦鹏. 有机多孔定形复合相变储热材料研究进展[J]. 储能科学与技术, 2025, 14(7): 2635-2653. |
[4] | 孟凡康, 彭栋坤, 蔡鹏. 严寒地区相变日光温室蓄放热性能模拟研究[J]. 储能科学与技术, 2025, 14(6): 2532-2539. |
[5] | 李一鸣, 严景好, 席丽娜, 孙晓兵, 刘鸣皋, 李杰, 孙小琴. 基于高孔隙率泡沫金属的偏心管式复合相变储热单元储热性能数值模拟[J]. 储能科学与技术, 2025, 14(5): 1931-1942. |
[6] | 杨斌, 于祥京, 郑洋, 杨世轩, 杨启容, 乔大梁, 孙杨, 李友平. 管壳式相变储能换热器翅片优化模拟分析[J]. 储能科学与技术, 2025, 14(4): 1394-1412. |
[7] | 黄喆, 于志明, 卿召进, 张兆利. 旋转热边界下球形蓄热单元内PW/SEBS/EG复合相变材料的传热特性[J]. 储能科学与技术, 2025, 14(4): 1413-1423. |
[8] | 全瑞星, 缪文晶, 袁长顺, 程广贵, 赵彦琦. 聚乙二醇基定型复合相变材料的研究进展[J]. 储能科学与技术, 2025, 14(3): 1010-1025. |
[9] | 张新宇, 罗声豪, 吴颖欣, 刘针莹, 张立志, 凌子夜. 复合相变材料用于锂离子电池热管理和热失控防护研究进展[J]. 储能科学与技术, 2025, 14(3): 1040-1053. |
[10] | 杨智颖, 卢伟, 姚嘉, 程阳, 伍德坚, 文海龙. 基于变密度拓扑优化的液冷板散热流道设计[J]. 储能科学与技术, 2025, 14(2): 702-713. |
[11] | 陈艳, 黎子琦, 陈南豪, 张一弛, 吴晓鸿, 陈大柱. 聚乙二醇基聚合物固固相变材料的研究进展[J]. 储能科学与技术, 2025, 14(1): 124-139. |
[12] | 刘云汉, 王亮, 张双, 林曦鹏, 葛志伟, 白亚开, 林霖, 王艺斐, 陈海生. 基于圆柱封装单元的水合盐相变储热填充床的储释特性实验研究[J]. 储能科学与技术, 2024, 13(8): 2623-2633. |
[13] | 葛群, 梁涛, 侯彬, 王万红, 张龙, 吴梁玉, 张程宾, 刘向东. 植物工厂储热装置性能强化研究[J]. 储能科学与技术, 2024, 13(8): 2687-2695. |
[14] | 刘松燕, 王卫良, 彭世亮, 吕俊复. 兼顾高/低温环境性能的动力电池热管理系统设计[J]. 储能科学与技术, 2024, 13(7): 2181-2191. |
[15] | 赵晨阳, 于晓琨, 陶于兵. 改性氧化铜/正十八烷复合相变材料制备及性能表征研究[J]. 储能科学与技术, 2024, 13(6): 1786-1793. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||