储能科学与技术 ›› 2013, Vol. 2 ›› Issue (4): 383-401.doi: 10.3969/j.issn.2095-4239.2013.04.007
高健, 吕迎春, 李泓
收稿日期:
2013-05-20
修回日期:
2013-06-01
出版日期:
2013-08-19
发布日期:
2013-08-19
通讯作者:
李泓,研究员,研究方向为固体离子学与锂电池材料,E-mail:hli@iphy.ac.cn.
作者简介:
高健(1987--),女,博士研究生,研究方向为锂离子电池固体电解质,E-mail:mingze675@126.com
基金资助:
GAO Jian, LV Yingchun, LI Hong
Received:
2013-05-20
Revised:
2013-06-01
Online:
2013-08-19
Published:
2013-08-19
摘要: 充放电过程中电极材料的相变与材料的储锂机制,储锂容量范围,电压曲线,储锂动力学,材料的体积变化以及吸放热等密切相关.获得材料在充放电过程中的相组成,相结构演化及相图,对于全面理解材料及其充放电行为,开发新的电池材料体系具有十分重要的意义.本文小结了脱嵌锂引起的相变,并介绍了锂电池中相图的计算和实验方法.
中图分类号:
高健, 吕迎春, 李泓. 锂电池基础科学问题(IV)----相图与相变(2)[J]. 储能科学与技术, 2013, 2(4): 383-401.
GAO Jian, LV Yingchun, LI Hong. Fundamental scientific aspects of lithium batteries (IV) --Phase transition and phase diagram (2)[J]. Energy Storage Science and Technology, 2013, 2(4): 383-401.
[1] Derosa P A,Balbuena P B. A lattice-gas model study of lithium intercalation in graphite [J]. J. Electrochem. Soc. ,1999,146(10):3630-3638. [2] Yamaki J,Egashira M,Okada S. Potential and thermodynamics of graphite anodes in Li-ion cells [J]. J. Electrochem. Soc. ,2000,147(2):460-465. [3] Marquez A,Vargas A,Balbuena P B. Computational studies of lithium intercalation in model graphite in the presence of tetrahydrofuran [J]. J. Electrochem. Soc. ,1998,145(10):3328-3334. [4] Nalimova V A,Guerard D,Lelaurain M, et al . X-ray-investigation of highly saturated Li-graphite intercalation compound [J]. Carbon ,1995,33(2):177-181. [5] Dahn J R. Phase-diagram of Li x C 6 [J]. Phys. Rev. B ,1991,44(17):9170-9177. [6] Hu Jin(胡进). Investigations of anode materials with nano-structure for lithium ion battery[D]. Beijing:Institute of Physics,Chinese Academy of Sciences,2005. [7] Woo K C,Mertwoy H,Fischer J E, et al . Experimental phase-diagram of lithium-intercalated graphite [J]. Phys. Rev. B ,1983,27(12):7831-7834. [8] Guerard D,Herold A. Intercalation of lithium into graphite and other carbons [J]. Carbon ,1975,13(4):337-345. [9] Reimers J N,Dahn J R. Electrochemical and Insitu X-ray- diffractionstudies of lithium intercalation in Li x CoO 2 [J]. J. Electrochem. Soc. ,1992,139(8):2091-2097. [10] Reimers J N,Dahn J R,Vonsacken U. Effects of impurities on the electrochemical properties of LiCoO 2 [J]. J. Electrochem. Soc. ,1993,140(10):2752-2754. [11] Ohzuku T,Ueda A. Solid-state redox reactions of Li x CoO 2 (R-3m) for 4 Volt secondary lithium cells [J]. J. Electrochem. Soc. ,1994,141(11):2972-2977. [12] Shao H Y,Levasseur S,Weill F, et al . Probing lithium and vacancy ordering in O 3 layered Li x CoO 2 ( x approximate to 0.5) An electron diffraction study [J]. J. Electrochem. Soc. ,2003,150(3):A366-A373. [13] Menetrier M,Saadoune I,Levasseur S, et al . The insulator-metal transition upon lithium deintercalation from LiCoO 2 :Electronic properties and Li-7 NMR study [J]. J. Mater. Chem. ,1999,9(5):1135-1140. [14] Marianetti C A,Kotliar G,Ceder G. A first-order Mott transition in LixCoO 2 [J]. Nat. Mater. ,2004,3(9):627-631. [15] Van D V A,Aydinol M K,Ceder G. First-Principles evidence for stage ordering in Li x CoO 2 [J]. J. Electrochem. Soc. ,1998,145(6):2149-2155. [16] Mizushima K,Jones P C,Wiseman P J, et al . Li x CoO 2 (oless-thanxless-than-or-equal-to1) A new cathode material for batteries of high-energy density [J]. Mater. Res. Bull. ,1980,15(6):783-789. [17] Amatucci G G,Tarascon J M,Klein L C. CoO 2 ,the end member of the Li x CoO 2 solid solution [J]. J. Electrochem. Soc. ,1996,143(3):1114-1123. [18] Li W,Currie C. Morphology effects on the electrochemical performance of LiNi 1- x Co x O 2 [J]. J. Electrochem. Soc. ,1997,144(8):2773-2779. [19] Lu X,Sun Y,Jian Z, et al . new insight into the atomic structure of electrochemically delithiated O 3 -Li (1- x ) CoO 2 (0≤ x ≤0.5)nanoparticles [J]. Nano Letters ,2012,12(12):6192-6197. [20] Delmas C,Braconnier J J,Hagenmuller P. A new variety of LiCoO 2 with an unusual oxygen packing obtained by exchange-reaction [J]. Mater. Res. Bull. ,1982,17(1):117-123. [21] Carlier D,Saadoune I,Croguennec L, et al . On the metastable O 2 -type LiCoO 2 [J]. Solid State Ionics ,2001,144(3-4):263-276. [22] Mendiboure A,Delmas C,Hagenmuller P. New layered structure obtained by electrochemical deintercalation of the metastable LiCoO 2 (02)variety [J]. Mater. Res. Bull. ,1984,19(10):1383-1392. [23] Carlier D,Saadoune I,Menetrier M, et al . Lithium electrochemical deintercalation from O 2 -LiCoO 2 -Structure and physical properties [J]. J. Electrochem. Soc. ,2002,149(10):A1310-A1320. [24] Carlier D,Van D V A,Delmas C, et al . First-principles investigation of phase stability in the O 2 -LiCoO 2 system [J]. Chem. Mater. ,2003,15(13):2651-2660. [25] Tarascon J M,Wang E,Shokoohi F K, et al . The spinel phase of LiMn 2 O 4 as a cathode in secondary lithium cells [J]. J. Electrochem. Soc. ,1991,138(10):2859-2864. [26] Bittihn R,Herr R,Hoge D. The swing system,a nonaqueous rechargeable carbon metal-oxide cell [J]. J. Power Sources ,1993,43(1-3):223-231. [27] Li G H,Ikuta H,Uchida T, et al . The spinel phases LiM y Mn 2- y O 4 (M=Co,Cr,Ni)as the cathode for rechargeable lithium batteries [J]. J. Electrochem. Soc. ,1996,143(1):178-182. [28] Sigala C,Guyomard D,Verbaere A, et al . Positive electrode materials with high operating voltage for lithium batteries LiCr y Mn 2- y O 4 (0≤ y ≤1)[J]. Solid State Ionics ,1995,81(3-4):167-170. [29] Amine K,Tukamoto H,Yasuda H, et al . Preparation and electrochemical investigation of LiMn 2- x Me x O 4 (Me : Ni,Fe,and x =0.5,1)cathode materials for secondary lithium batteries [J]. J. Power Sources ,1997,68(2):604-608. [30] Kawai H,Nagata M,Kageyama H, et al . 5 V lithium cathodes based on spinel solid solutions Li 2 Co 1+ x Mn 3- x O 8 :-1≤ X ≤1 [J]. Electrochim Acta ,1999,45(1-2):315-327. [31] Ein-eli Y,Howard W F,L S H, et al . LiMn 2- x Cu x O 4 spinels (0.1≤ x ≤0.5): A new class of 5 V cathode materials for Li batteries-I. Electrochemical,structural,and spectroscopic studies [J]. J. Electrochem. Soc. ,1998,145(4):1238-1244. [32] Wang Liping(王丽平). Towards a better understanding of LiNi 0.5 Mn 1.5 O 4 high voltage cathode material:Combined powder and thin film study [D]. Beijing:Institute of Physics,Chinese Academy of Sciences,2011. [33] Zhong Q M,Bonakdarpour A,Zhang M J, et al . Synthesis and electrochemistry of LiNi x Mn 2- x O 4 [J]. J. Electrochem. Soc. ,1997,144(1):205-213. [34] Kim J H,Myung S T,Yoon C S, et al . Comparative study of LiNi 0.5 Mn 1.5 O 4-delta and LiNi 0.5 Mn 1.5 O 4 cathodes having two crystallographic structures: Fd-3m and P4 3 32 [J]. Chem. Mater. ,2004,16(5):906-914. [35] Poizot P,Laruelle S,Grugeon S, et al . Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries [J]. Nature ,2000,407(6803):496-499. [36] Debart A,Dupont L,Poizot P, et al . A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium [J]. J. Electrochem. Soc. ,2001,148(11):A1266-A1274. [37] Poizot P,Laruelle S,Grugeon S, et al . Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li [J]. J. Electrochem. Soc. ,2002,149(9):A1212-A1217. [38] Larcher D,Sudant G,Leriche J B, et al . The electrochemical reduction of Co 3 O 4 in a lithium cell [J]. J. Electrochem. Soc. ,2002,149(3):A234-A241. [39] Li H,Richter G,Maier J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries [J]. Adv. Mater. ,2003,15(9):736-739. [40] Badway F,Pereira N,Cosandey F, et al . Carbon-metal fluoride nanocomposites Structure and electrochemistry of FeF 3 :C [J]. J. Electrochem. Soc. ,2003,150(9):A1209-A1218. [41] Balaya P,Li H,Kienle L, et al . Fully reversible homogeneous and heterogeneous Li storage in RuO 2 with high capacity [J]. Adv. Funct. Mater. ,2003,13(8):621-625. [42] Silva D C C,Crosnier O,Ouvrard G, et al . Reversible lithium uptake by FeP 2 [J]. Electrochem. Solid St. ,2003,6(8):A162-A165. [43] Li H,Balaya P,Maier J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides [J]. J. Electrochem. Soc. ,2004,151(11):A1878-A1885. [44] Fu Z W,Wang Y,Yue X L, et al . Electrochemical reactions of lithium with transition metal nitride electrodes [J]. J. Phys. Chem. B ,2004,108(7):2236-2244. [45] Fu Z W,Li C L,Liu W Y, et al . Electrochemical reaction of lithium with cobalt fluoride thin film electrode [J]. J. Electrochem. Soc. ,2005,152(2):E50-E55. [46] Yu X Q,He Y,Sun J P, et al . Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential [J]. Electrochem. Commun. ,2009,11(4):791-794. [47] Zhong K F,Xia X,Zhang B, et al . MnO powder as anode active materials for lithium ion batteries [J]. J. Power Sources ,2010,195(10):3300-3308. [48] Zhong K F,Zhang B,Luo S H, et al . Investigation on porous MnO microsphere anode for lithium ion batteries [J]. J . Power Sources ,2011,196(16):6802-6808. [49] Hu J,Li H,Huang X J. Cr 2 O 3 -based anode materials for Li-ion batteries [J]. Electrochem. Solid St .,2005,8(1):A66-A69. [50] Grugeon S,Laruelle S,Dupont L, et al . Combining electrochemistry and metallurgy for new electrode designs in Li-ion batteries [J]. Chem. Mater .,2005,17(20):5041-5047. [51] Hu J,Li H,Huang X J. Influence of micropore structure on Li-storage capacity in hard carbon spherules [J]. Solid State Ionics ,2005,176(11-12):1151-1159. [52] Dupont L,Grugeon S,Laruelle S, et al . Structure,texture and reactivity versus lithium of chromium-based oxides films as revealed by TEM investigations [J]. J. Power Sources ,2007,164(2):839-848. [53] Dupont L,Laruelle S,Grugeon S, et al . Mesoporous Cr 2 O 3 as negative electrode in lithium batteries:TEM study of the texture effect on the polymeric layer formation [J]. J. Power Sources ,2008,175(1):502-509. [54] Sun J P,Tang K,Yu X Q, et al . Overpotential and electrochemical impedance analysis on Cr 2 O 3 thin film and powder electrode in rechargeable lithium batteries [J]. Solid State Ionics ,2008,179(40):2390-2395. [55] Grugeon S,Laruelle S,Herrera U R, et al . Particle size effects on the electrochemical performance of copper oxides toward lithium [J]. J. Electrochem. Soc. ,2001,148(4):A285-A292. [56] Luo J Y,Zhang J J,Xia Y Y. Highly electrochemical reaction of lithium in the ordered mesoporosus beta-MnO 2 [J]. Chem. Mater. ,2006,18(23):5618-5623. [57] Jiao F,Harrison A,Bruce P G. Ordered three-dimensional arrays of monodispersed Mn 3 O 4 nanoparticles with a core-shell structure and spin-glass behavior [J]. Angew. Chem. Int. Edit. ,2007,46(21): 3946-3950. [58] Hu J,Li H,Huang X J, et al . Improve the electrochemical performances of Cr 2 O 3 anode for lithium ion batteries [J]. Solid State Ionics ,2006,177(26-32):2791-2799. [59] Gireaud L,Grugeon S,Pilard S, et al . Mass spectrometry investigations on electrolyte degradation products for the development of nanocomposite electrodes in lithium ion batteries [J]. Anal. Chem. ,2006,78(11):3688-3698. [60] Yu Xiqian(禹习谦). Investigations on new materials for Li-ion battery using thin film technologies [D]. Beijing:Institute of Physics,Chinese Academy of Sciences,2010. [61] Cui Z H,Guo X X,Li H. Improved electrochemical properties of MnO thin film anodes by elevated deposition temperatures:Study of conversion reactions [J]. Electrochem. Acta ,2013,89:229-238. [62] Doe R E,Persson K A,Meng Y S, et al . First-principles investigation of the Li-Fe-F phase diagram and equilibrium and nonequilibrium conversion reactions of iron fluorides with lithium [J]. Chem. Mater. ,2008,20(16):5274-5283. [63] Delmer O,Balaya P,Kienle L, et al . Enhanced potential of amorphous electrode materials:Case study of RuO 2 [J]. Adv. Mater. ,2008,20(3):501-505. [64] Delmer O,Maier J. On the chemical potential of a component in a metastable phase-application to Li-storage in the RuO 2 -Li system [J]. Phys. Chem. Chem. Phys .,2009,11(30):6424-6429. [65] Zhang Bin (张斌). Electrochemical studies of iron and manganese phosphate cathode materials for Li-ion battery [D]. Beijing :Institute of Physics,Chinese Academy of Sciences,2011. [66] Padhi A K,Nanjundaswamy K S,Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J. Electrochem. Soc. ,1997,144(4):1188-1194. [67] Andersson A S,Kalska B,Haggstrom L, et al . Lithium extraction/insertion in LiFePO 4 :An X-ray diffraction and Mossbauer spectroscopy study [J]. Solid State Ionics ,2000,130(1-2):41-52. [68] Andersson A S,Thomas J O. The source of first-cycle capacity loss in LiFePO 4 [J]. J. Power Sources ,2001,97(8):498-502. [69] Liu Lijun(刘立君). Studies on cathode materials for lithium ion batteries [D]. Beijing:Institute of Physics,Chinese Academy of Sciences,2003. [70] Srinivasan V,Newman J. Discharge model for the lithium iron-phosphate electrode [J]. J. Electrochem. Soc. ,2004,151(10):A1517-A1529. [71] Chen G Y,Song X Y,Richardson T J. Electron microscopy study of the LiFePO 4 to FePO 4 phase transition [J]. Electrochem. Solid St. ,2006,9(6):A295-A298. [72] Laffont L,Delacourt C,Gibot P, et al . Study of the LiFePO 4 /FePO 4 two-phase system by high-resolution electron energy loss spectroscopy [J]. Chem. Mater. ,2006,18(23):5520-5529. [73] Delmas C,Maccario M,Croguennec L, et al . Lithium deintercalation in LiFePO 4 nanoparticles via a domino-cascade model [J]. Nat. Mater. ,2008,7(8):665-671. [74] Gu L,Zhu C,Li H, et al . Direct observation of lithium staging in partially delithiated LiFePO 4 at atomic resolution [J]. Journal of the American Chemical Society ,2011,133(13):4661-4663. [75] Suo L M,Han W Z,Lu X, et al . Highly ordered staging structural interface between LiFePO 4 and FePO 4 [J]. Phys. Chem. Chem. Phys. ,2012,14(16):5363-5367. [76] Malik R,Zhou F,Ceder G. Kinetics of non-equilibrium lithium incorporation in LiFePO 4 [J]. Nat. Mater. ,2011,10(8):587-590. [77] Morgan D,Van D V A,Ceder G. Li conductivity in Li x MPO 4 (M = Mn,Fe,Co,Ni)olivine materials [J]. Electrochem. Solid St. ,2004,7(2):A30-A32. [78] Chung S Y,Bloking J T,Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nat. Mater. ,2002,1(2):123-128. [79] Kang B,Ceder G. Battery materials for ultrafast charging and discharging [J]. Nature ,2009,458(7235):190-193. [80] Kim D H,Kim J. Synthesis of LiFePO 4 nanoparticles in polyol medium and their electrochemical properties [J]. Electrochem. Solid St. ,2006,9(9):A439-A442. [81] Delacourt C,Poizot P,Tarascon J M, et al . The existence of a temperature-driven solid solution in Li x FePO 4 for 0≤ x ≤1 [J]. Nat. Mater. ,2005,4(3):254-260. [82] Delacourt C,Rodriguez C J,Schmitt B, et al . Crystal chemistry of the olivine-type Li x FePO 4 system(0≤x≤1)25~370 ℃ [J]. Solid State Sci. ,2005,7(12):1506-1516. [83] Chen G Y,Song X Y,Richardson T J. Metastable solid-solution phases in the Li x FePO 4 /FePO 4 system [J]. J. Electrochem . Soc .,2007,154(7):A627-A632. [84] Dodd J L,Yazami R,Fultz B. Phase diagram of Li( x )FePO 4 [J]. Electrochem. Solid St., 2006,9(3):A151-A155. [85] Sun Y,Lu X,Xiao R J, et al. Kinetically controlled lithium-staging in delithiated LiFePO 4 driven by the Fe center mediated interlayer Li-Li interactions [J]. Chem. Mater .,2012,24(24):4693-4703. [86] Wang L,Maxisch T,Ceder G. A first-principles approach to studying the thermal stability of oxide cathode materials [J]. Chem. Mater. ,2007,19(3):543-552. [87] Bak S M,Nam K W,Chang W, et al . Correlating structural changes and gas evolution during the thermal decomposition of charged Li x Ni 0.8 Co 0.15 Al 0.05 O 2 cathode materials [J]. Chem. Mater. ,2013,25(3):337-351. [88] Chen Z H,Ren Y,Jansen A N, et al . New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries [J]. Nat. Commun .,2013,4:1513. [89] Benedek R,Thackeray M M,Van D WA. Free energy for protonation reaction in lithium-ion battery cathode materials [J]. Chem. Mater.,2008,20(17):5485-5490. [90] Lu Xueshan(陆学善). Phase Diagram and Phase Transition(相图与相变)[M]. Hefei:Press of University of Science and Technology of China,1990:376-579. [91] Saunders N M A P. CALPHAD(calculation of phase diagrams):A comprehensive guide [M]. Oxford: Oxford,1998. [92] Aydinol M K,Kohan A F,Ceder G. Ab initio calculation of the intercalation voltage of lithium transition metal oxide electrodes for rechargeable batteries [J]. J. Power Sources ,1997,68(2):664-668. [93] Van D V A,Ceder G. Lithium diffusion in layered Li x CoO 2 [J]. Electrochem. Solid St .,2000,3(7):301-304. [94] Meng Y S,Van D V A,Chan M K Y, et al . Ab initio study of sodium ordering in Na 0.75 CoO 2 and its relation to Co 3+ /Co 4+ charge ordering [J]. Phys. Rev. B ,2005,72(17):172103. [95] Maxisch T,Zhou F,Ceder G. Ab initio study of the migration of small polarons in olivine Li x FePO 4 and their association with lithium ions and vacancies [J]. Phys. Rev. B ,2006,73(10):104301. [96] Ong S P,Chevrier V L,Hautier G, et al . Voltage,stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials [J]. Energy & Environmental Science ,2011,4(9):3680. [97] Hautier G,Jain A,Chen H, et al . Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations [J]. J. Mater. Chem .,2011,21(43):17147-17153. [98] Jain A,Hautier G,Moore C, et al . A computational investigation of Li 9 M 3 (P 2 O 7 ) 3 (PO 4 ) 2 (M= V,Mo)as cathodes for Li-ion batteries [J]. J. Electrochem . Soc .,2012,159(5):A622-A633. [99] Chen H,Hautier G,Jain A, et al . Carbonophosphates:A new family of cathode materials for Li-ion batteries identified computationally [J]. Chem. Mater .,2012,24(11):2009-2016. [100] Ping O S,Wang L,Kang B,et al. Li-Fe-P-O 2 phase diagram from first principles calculations [J]. Chem. Mater. ,2008,20(5):1798-1807. [101] Ong S P,Jain A,Hautier G, et al . Thermal stabilities of delithiated olivine MPO 4 (M= Fe,Mn)cathodes investigated using first principles calculations[J]. Electrochem. Commun. ,2010,12(3):427-30. [102] Doe R E,Persson K A,Meng Y S, et al . First-principles investigation of the Li-Fe-F phase diagram and equilibrium and nonequilibrium conversion reactions of iron fluorides with lithium[J]. Chem. Mater. ,2008,20(16):5274-5283. [103] Hautier G,Fischer C C,Jain A, et al. Finding nature's missing ternary oxide compounds using machine learning and density functional theory [J]. Chem. Mater .,2010,22(12):3762-3767. [104] Hautier G,Fischer C,Ehrlacher V, et al. Data mined ionic substitutions for the discovery of new compounds [J]. Inorganic Chemistry ,2011,50(2):656. [105] Fleischauer M D,Hatchard T D,Rockwell G P, et al. Design and testing of a 64-channel combinatorial electrochemical cell [J]. J. Electrochem . Soc .,2003,150(11):A1465-A1469. [106] Roberts M R,Vitins G,Denuault G, et al . High throughput electrochemical observation of structural phase changes in LiFe 1- x Mn x PO 4 during charge and discharge [J]. J. Electrochem . Soc .,2010,157(4):A381-A386. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[3] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[4] | 冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[7] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[8] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[9] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[10] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[11] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[12] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[13] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[14] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[15] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||