[1] Tarascon J,Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature ,2001,414:359-367. [2] Armand M,Tarascon J M. Building better batteries[J]. Nature ,2008,451(7179):652-657. [3] Zu C X,Li H. Thermodynamic analysis on energy densities of batteries[J]. Energy Environ. Sci .,2011(4):2614-2624. [4] Alper J. The battery:Not yet a terminal case[J]. Science ,2002,296(5571):1224-1226. [5] Goodenough J B,Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials ,2010,22(3):587-603. [6] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews-Columbus ,2004,104(10):4303-4418. [7] Dey A N. Film formation on lithium anode in propylene carbonate[J]. Journal of the Electrochemical Society ,1970,117(8):C248. [8] Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems The solid electrolyte interphase model[J]. Journal of the Electrochemical Society ,1979,126(12):2047. [9] Peled E,Golodnitsky D,Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of the Electrochemical Society ,1997,144(8):L208-L210. [10] Aurbach D,Markovsky B,Levi M, et al . New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries[J]. Journal of Power Sources ,1999,81:95-111. [11] Aurbach D. Review of selected electrode Solution interactions which determine the performance of Li and Li ion batteries[J]. Journal of Power Sources ,2000,89(2):206-218. [12] Aurbach D,Zinigrad E,Cohen Y,e t al . A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics ,2002,148(3):405-416. [13] Aurbach D,Gamolsky K,Markovsky B, et al . On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta ,2002,47(9):1423-1439. [14] Kim S-P,Duin A C T,Shenoy V B. Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI)in Li-ion batteries:A molecular dynamics study[J]. Journal of Power Sources ,2011,196(20):8590-8597. [15] Verma P,Maire P,Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta ,2010,55(22):6332-6341. [16] Li H,Huang X,Chen L. Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries[J]. Electrochemical and Solid-State Letters ,1998,1(6):241-243. [17] Hu J,Li H,Huang X, et al . Improve the electrochemical performances of Cr 2 O 3 anode for lithium ion batteries[J]. Solid State Ionics ,2006,177(26):2791-2799. [18] Wang Q,Li H,Chen L, et al . Investigation of lithium storage in bamboo-like CNTs by HRTEM[J]. Journal of the Electrochemical Society ,2003,150(9):A1281-A1286. [19] Hu J,Li H,Huang X. Electrochemical behavior and microstructure variation of hard carbon nano-spherules as anode material for Li-ion batteries[J]. Solid State Ionics ,2007,178(3):265-271. [20] Shu J(舒杰). 锂离子电池界面及负极材料相关问题研究[D]. Beijing:Institute of Physics,Chinese Academy of Sciences,2007. [21] Liu N,Li H,Wang Z, et al . Origin of solid electrolyte interphase on nanosized LiCoO 2 [J]. Electrochemical and Solid-State Letters ,2006,9(7):A328-A331. [22] Wang L P,Li H,Huang X J. Electrochemical properties and interfacial reactions of LiNi 0.5 Mn 1.5 O 4- σ nanorods[J]. Progress in Natural Science-Materials International ,2012,22(3):207-212. [23] Zhong K,Xia X,Zhang B, et al . MnO powder as anode active materials for lithium ion batteries[J]. Journal of Power Sources , 2010,195(10):3300-3308. [24] Ariyoshi K,Yamato R,Ohzuku T. Zero-strain insertion mechanism of Li [Li 1/3 Ti 5/3 ]O 4 for advanced lithium-ion (shuttlecock) batteries[J]. Electrochimica Acta ,2005,51(6):1125-1129. [25] Schwager F,Geronov Y,Muller R. Ellipsometer studies of surface layers on lithium[J]. Journal of the Electrochemical Society ,1985,132(2):285-289. [26] Li H,Mo Y,Pei N, et al . Surface-enhanced Raman scattering study on passivating films of Ag electrodes in lithium batteries[J]. The Journal of Physical Chemistry B ,2000,104(35):8477-8480. [27] Zeng Y,Li L,Li H, et al . TG-MS analysis on thermal decomposable components in the SEI film on Cr 2 O 3 powder anode in Li-ion batteries[J]. Ionics ,2009,15(1):91-96. [28] Andersson A M,Edstro?m K. Chemical composition and morphology of the elevated temperature SEI on graphite[J]. Journal of the Electrochemical Society ,2001,148(10):A1100. [29] Andersson A M,Abraham D P,Haasch R, et al . Surface characterization of electrodes from high power lithium-ion batteries[J]. Journal of the Electrochemical Society ,2002,149(10):A1358. [30] Jeong S-K,Inaba M,Iriyama Y, et al . AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries[J]. Journal of Power Sources ,2003,(119-121):555-560. [31] Inaba M,Tomiyasu H,Tasaka A, et al . Atomic force microscopy study on the stability of a surface film formed on a graphite negative electrode at elevated temperatures[J]. Langmuir ,2004,20(4):1348-1355. [32] Lucas I T,Pollak E,Kostecki R. In situ AFM studies of SEI formation at a Sn electrode[J]. Electrochemistry Communications ,2009, 11(11):2157-2160. [33] Plodinec M,Loparic M,Monnier C A, et al . The nanomechanical signature of breast cancer[J]. Nat. Nanotechnol. ,2012,7(11): 757-765. [34] Zhang J,Wang R,Yang X, et al . Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy[J]. Nano Lett. ,2012,12(4):2153-2159. [35] Xu K,Cresce A von,Lee U. Differentiating contributions to"Ion Transfer"barrier from interphasial resistance and Li desolvation at electrolyte/graphite interface[J]. Langmuir ,2010,26(13):11538-11543. [36] Shi S,Lu P,Liu Z, et al . Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. Journal of the American Chemical Society ,2012,134(37):15476-15487. [37] Shi S,Qi Y,Li H, et al . Defect thermodynamics and diffusion mechanisms in Li 2 CO 3 and implications for the solid electrolyte interphase in Li-ion batteries[J]. The Journal of Physical Chemistry C ,2013,113(17):8579-8593. [38] Liu N(柳娜). 锂离子电池正极材料的界面及改性研究[D]. Beijing:Institute of physics,Chinese Academy of Sciences,2006. [39] He Y,Yu X,Wang Y, et al . Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency[J]. Advanced Materials ,2011,23(42):4938-4941. [40] Martin L,Martinez H,Ulldemolins M, et al . Evolution of the Si electrode/electrolyte interface in lithium batteries characterized by XPS and AFM techniques: The influence of vinylene carbonate additive[J]. Solid State Ionics ,2012,215:36-44. [41] Etacheri V,Haik O,Goffer Y, et al . Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes[J]. Langmuir ,2012,28(1):965-976. [42] Lin Y M,Klavetter K C,Abel P R, et al . High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries[J]. Chem. Commun. ,2012,48(58):7268-7270. [43] Xu K,Zhang S,Jow T R. LiBOB as additive in LiPF 6 -Based lithium ion electrolytes[J]. Electrochemical and Solid-State Letters , 2005,8(7):A365-A368. [44] Zhang S,Xu K,Jow T. Enhanced performance of Li-ion cell with LiBF 4 -PC based electrolyte by addition of small amount of LiBOB[J]. Journal of Power Sources ,2006,156(2):629-633. |