储能科学与技术 ›› 2014, Vol. 3 ›› Issue (1): 53-65.doi: 10.3969/j.issn.2095-4239.2014.01.008
马璨, 吕迎春, 李泓
收稿日期:
2013-12-11
出版日期:
2014-01-01
发布日期:
2014-01-01
通讯作者:
李泓,研究员,研究方向为固体离子学和锂电池材料,E-mail:hli@iphy.ac.cn.
作者简介:
第一作者:马璨(1989--),女,硕士研究生,研究方向为锂离子电池高容量正极材料,E-mail:macan07@163.com;
基金资助:
MA Can, LV Yingchun, LI Hong
Received:
2013-12-11
Online:
2014-01-01
Published:
2014-01-01
摘要: 提高锂离子电池正极材料的综合性能以满足其对能量存储日益提高的要求,一直是锂离子电池领域最重要的研究方向.目前的正极材料主要基于层状结构,尖晶石结构以及橄榄石结构,采用这些材料的锂离子电池可以基本满足消费电子,电动车辆,规模储能等要求.本文小结了目前广泛使用的锂离子电池正极材料的性能特点,讨论了当前正极材料的研究和发展状况.
中图分类号:
马璨, 吕迎春, 李泓. 锂离子电池基础科学问题(VII)----正极材料[J]. 储能科学与技术, 2014, 3(1): 53-65.
MA Can, LV Yingchun, LI Hong. Fundamental scientific aspects of lithium batteries (VII)--Positive electrode materials[J]. Energy Storage Science and Technology, 2014, 3(1): 53-65.
[1] Armand M. Materials for Advanced Batteries[M]. New York:Plenum Press,1980. [2] Whittingham M S. Lithium batteries and cathode materials[J]. Chem. Rev. ,2004,104(10):4271-4302. [3] Mizushima K,Jones P C,Wiseman P J,Goodenough J B. Li x CoO 2 (0 x Solid State Ionics ,1981,3-4:171-174. [4] Thackeray M,David W,Bruce P, et al . Lithium insertion into manganese spinels[J]. Materials Research Bulletin ,1983,18(4):461-472. [5] Padhi A K,Nanjundaswamy K S,Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society ,1997,144(4):1188-1194. [6] Thomas M,Bruce P,Goodenough J. AC impedance analysis of polycrystalline insertion electrodes:Application to Li 1- x CoO 2 [J]. Journal of the Electrochemical Society ,1985,132(7):1521-1528. [7] Thomas M,Bruce P,Goodenough J. Lithium mobility in the layered oxide Li 1- x CoO 2 [J]. Solid State Ionics ,1985,17(1):13-19. [8] Hong J S,Selman J. Relationship between calorimetric and structural characteristics of lithium-ion cells II. Determination of Li transport properties[J]. Journal of the Electrochemical Society ,2000,147(9):3190-3194. [9] Chen L,Huang X,Kelder E, et al . Diffusion enhancement in Li x Mn 2 O 4 [J]. Solid State Ionics ,1995,76(1):91-96. [10] Barker J,Pynenburg R,Koksbang R. Determination of thermo- dynamic, kinetic and interfacial properties for the Li/Li x Mn 2 O 4 system by electrochemical techniques[J]. Journal of Power Sources ,1994,52(2):185-192. [11] Bach S,Farcy J,Pereira-ramos J. An electrochemical investigation of Li intercalation in the sol-gel LiMn 2 O 4 spinel oxide[J]. Solid State Ionics ,1998,110(3):193-198. [12] Prosini P P,Lisi M,Zane D, et al . Determination of the chemical diffusion coefficient of lithium in LiFePO 4 [J]. Solid State Ionics ,2002,148(1-2):45-51. [13] Delmas C,Fouassier C,Hagenmuller P. Structural classification and properties of the layered oxides[J]. Physica B+C ,1980,99(1-4):81-85. [14] Mendiboure A,Delmas C,Hagenmuller P. New layered structure obtained by electrochemical deintercalation of the metastable LiCoO 2 variety[J]. Materials Research Bulletin ,1984,19(10):1383-1392. [15] Chang K,Hallstedt B,Music D, et al . Thermodynamic description of the layered O 3 and O 2 structural LiCoO 2 -CoO 2 pseudo-binary systems[J]. Calphad ,2013,41:6-15. [16] Delmas C,Braconnier J J,Hagenmuller P. A new variety of LiCoO 2 with an unusual oxygen packing obtained by exchange reaction[J]. Materials Research Bulletin ,1982,17(1):117-123. [17] Reimers J N,Dahn J R. Electrochemical and insitu X-ray diffraction studies of lithium intercalation in Li x C O O 2 [J]. Journal of the Electrochemical Society ,1992,139(8):2091-2097. [18] Goodenough J B M K,Takeda T. Solid-solution oxides for storage battery electrodes[J]. Japanese Journal of Applied Physics ,1980,19(3):305-313. [19] OhzykuT,Uuda A. Solid-state redox reactions of LiCoO 2 (R-3m) for 4V secondary lithium cells[J]. Journal of the Electrochemical Society ,1994,141(11):2972-2977. [20] Shao-horn Y,Leasseur S,Weill F, et al . Probing lithium and vacancy ordering in O 3 layered Li x CoO 2 ( x ≈0.5) an electron diffraction study[J]. Journal of the Electrochemical Society ,2003,150(3):A366-A373. [21] Reimers J N,Dahn J. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in Li x CoO 2 [J]. Journal of the Electrochemical Society ,1992,139(8):2091-2097. [22] Yang S H,Croguennec L,Delmas C, et al . Atomic resolution of lithium ions in LiCoO 2 [J]. Nat. Mater. ,2003,2(7):464-467. [23] Huang R,Hitosugi T,Findlay S D, et al . Real-time direct observation of Li in LiCoO 2 cathode material[J]. Applied Physics Letters ,2011,98(5):51913-51915. [24] Lu X,Sun Y,Jian Z, et al . New insight into the atomic structure of electrochemically delithiated O 3 -Li 1- x CoO 2 (0≤ x ≤0.5)nanoparticles[J]. Nano. Lett. ,2012,12(12):6192-6197. [25] Cho J,Kim Y J,Park B. LiCoO 2 cathode material that does not show a phase transition from hexagonal to monoclinic phase[J]. Journal of the Electrochemical Society ,2001,148(10):A1110-A1115. [26] Cho J,Kim Y J,Kim T J, et al . Zero-strain intercalation cathode for rechargeable Li-ion cell[J]. Angewandte Chemie International Edition ,2001,40(18):3367-3369. [27] Chen Z H,Dahn J R. Effect of a ZrO 2 coating on the structure and electrochemistry of Li x CoO 2 when cycled to 4.5V[J]. Electrochem. Solid State Lett. ,2002,5(10):A213-A216. [28] Wang Z X,Huang X J,Chen L Q. Performance improvement of surface-modified LiCoO 2 cathode materials:An infrared absorption and X-ray photoelectron spectroscopic investigation[J]. Journal of the Electrochemical Society ,2003,150(2):A199-A208. [29] Li H,Wang Z X,Chen L Q, et al . Research on advanced materials for Li-ion batteries[J]. Advanced Materials ,2009,21(45):4593-4607. [30] Cho J,Lee J G,Kim B, et al . Effect of P 2 O 5 and AlPO 4 coating on LiCoO 2 cathode material[J]. Chemistry of Materials ,2003,15(16):3190-3193. [31] Cho J,Kim Y J,Park B. Novel LiCoO 2 cathode material with Al 2 O 3 coating for a Li ion cell[J]. Chemistry of Materials ,2000,12(12):3788-3791. [32] Liu L J,Wang Z X,Li H, et al . Al 2 O 3 -coated LiCoO 2 as cathode material for lithium ion batteries[J]. Solid State Ionics ,2002,152-153:341-346. [33] Wang Z X,Wu C A,Liu L J, et al . Electrochemical evaluation and structural characterization of commercial LiCoO 2 surfaces modified with MgO for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2002,149(4):A466-A471. [34] Stoyanova R,Zhecheva E,Zarkova L. Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMn y Co 1- y O 2 solid solutions[J]. Solid State Ionics ,1994,73(3):233-240. [35] Waki S,Dokko K,Itoh T, et al . High-speed voltammetry of Mn-doped LiCoO 2 using a microelectrode technique[J]. Journal of Solid State Electrochemistry ,2000,4(4):205-209. [36] Ceder G,Chiang Y M,Sadoway D, et al . Identification of cathode materials for lithium batteries guided by first-principles calculations[J]. Nature ,1998,392(6677):694-696. [37] Goodenough J B. Rechargeable batteries:Challenges old and new[J]. Journal of Solid State Electrochemistry ,2012,16(6):2019-2029. [38] Gao Y,Yakovleva M V,Ebner W B. Novel LiNi 1- x Ti x /2 Mg x /2 O 2 compounds as cathode materials for safer lithium-ion batteries[J]. Electrochemical and Solid-State Letters ,1998,1(3):117-119. [39] Hosono E,Kudo T,Honma I, et al . Synthesis of single crystalline spinel LiMn 2 O 4 nanowires for a lithium ion battery with high power density[J]. Nano. Lett. ,2009,9(3):1045-1051. [40] Amatucci G,Tarascon J M. Optimization of insertion compounds such as LiMn 2 O 4 for Li-ion batteries[J]. Journal of the Electro - chemical Society ,2002,149(12):K31-K46. [41] Arora P,Popov B N,White R E. Electrochemical investigations of cobalt-doped LiMn 2 O 4 as cathode material for lithium-ion batteries[J]. Journal of the Electrochemical Society ,1998,145(3):807-815. [42] Eriksson T,Gustafsson T,Thomas J O. Surface structure of LiMn 2 O 4 electrodes[J]. Electrochemical and Solid-State Letters ,2002,5(2):A35-A38. [43] Du P A,Blyr A,Cougral P, et al . Mechanism for limited 55 ℃ storage performance of Li 1.05 Mn 1.95 O 4 electrodes[J]. Journal of the Electrochemical Society ,1999,146(2):428-436. [44] Kim J S,Johnson C,Vaughey J, et al . The electrochemical stability of spinel electrodes coated with ZrO 2 ,Al 2 O 3 ,and SiO 2 from colloidal suspensions[J]. Journal of the Electrochemical Society ,2004,151(10):A1755-A1761. [45] Park S B,Shin H C,Lee W G, et al . Improvement of capacity fading resistance of LiMn 2 O 4 by amphoteric oxides[J]. Journal of Power Sources ,2008,180(1):597-601. [46] Zhan C,Lu J,Jeremy K A, et al . Mn (II) deposition on anodes and its effects on capacity fade in spinel lithium Manganate Carbon systems[J]. Nat. Commun. ,2013,4:2437. [47] Xia Y,Zhou Y,Yoshio M. Capacity fading on cycling of 4V Li/LiMn 2 O 4 cells[J]. Journal of the Electrochemical Society ,1997,144(8):2593-2600. [48] Lee J H,Hong J K,Jang D H, et al . Degradation mechanisms in doped spinels of LiM 0.05 Mn 1.95 O 4 (M= Li,B,Al,Co,and Ni)for Li secondary batteries[J]. Journal of Power Sources ,2000,89(1):7-14. [49] Treuil N,Labrug R E C,Menetrier M, et al . Relationship between chemical bonding nature and electrochemical property of LiMn 2 O 4 spinel oxides with various particle sizes:"Electrochemical grafting"concept[J]. The Journal of Physical Chemistry B ,1999,103(12):2100-2106. [50] Kosova N,Asanov I,Devyatkina E, et al . State of manganese atoms during the mechanochemical synthesis of LiMn 2 O 4 [J]. Journal of Solid State Chemistry ,1999,146(1):184-188. [51] Gao Y,Richard M,Dahn J. Photoelectron spectroscopy studies of Li 1+ x Mn 2- x O 4 for Li ion battery applications[J]. Journal of Applied Physics ,1996,80(7):4141-4152. [52] Sun X,Lee H,Yang X, et al . Improved elevated temperature cycling of LiMn 2 O 4 spinel through the use of a composite LiF-based electrolyte[J]. Electrochemical and Solid-State Letters ,2001,4(11):A184-A186. [53] Sun Y,Wang Z,Chen L, et al . Improved electrochemical performances of surface-modified spinel LiMn 2 O 4 for long cycle life lithium-ion batteries[J]. Journal of the Electrochemical Society ,2003,150(10):A1294-A1298. [54] Lee S,Cho Y,Song H K, et al . Carbon-coated single-crystal LiMn 2 O 4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries[J]. Angewandte Chemie International Edition ,2012,51(35):8748-8752. [55] Morgan D,Van D V A,Ceder G. Li conductivity in Li x MPO 4 (M= Mn,Fe,Co,Ni)olivine materials[J]. Electrochemical and Solid-State Letters ,2004,7(2):A30-A32. [56] Andersson A S,Thomas J O. The source of first-cycle capacity loss in LiFePO 4 [J]. Journal of Power Sources ,2001,97(8):498-502. [57] Srinivasan V,Newman J. Discharge model for the lithium iron-phosphate electrode[J]. Journal of the Electrochemical Society ,2004,151(10):A1517-A1529. [58] Delmas C,Maccario M,Croguennec L, et al . Lithium deintercalation in LiFePO 4 nanoparticles via a domino-cascade model[J]. Nature Materials ,2008,7(8):665-671. [59] Singh G,Burch D,Ceder G, et al . Phase-transformation wave dynamics in LiFePO 4 [J]. Solid State Phenomena ,2008,139:95-100. [60] Gu L,Zhu C,Li H, et al . Direct observation of lithium staging in partially delithiated LiFePO 4 at atomic resolution[J]. Journal of the American Chemical Society ,2011,133(13):4661-4663. [61] Suo L M,Han W Z,Lu X, et al . Highly ordered staging structural interface between LiFePO 4 and FePO 4 [J]. Phys. Chem. Chem. Phys. ,2012,14(16):5363-5367. [62] Malik R,Zhou F,Ceder G. Kinetics of non-equilibrium lithium incorporation in LiFePO 4 [J]. Nature Materials ,2011,10(8):587-590. [63] Sun Y,Lu X,Xiao R J, et al . Kinetically controlled lithium-staging in delithiated LiFePO 4 driven by the Fe center mediated interlayer Li-Li interactions[J]. Chemistry of Materials ,2012,24(24):4693-4703. [64] Gao Jian(高健),Lv Yingchun(吕迎春),Li Hong(李泓). Fundamental scientific aspects of lithium batteries (III) Phase transition and phase diagram[J]. Energy Storage Sciene and Technology (储能科学与技术),2013,2(3):250-266. [65] Chung S Y,Bloking J T,Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature Materials ,2002,1(2):123-128. [66] Ravet N,Goodenough J B,Besner S,Simoneau M,Hovington P,Armand M. Abstract127[C]//The Electrochemical Society and the Electrochemical Society of Japan Meeting Abstracts. Honolulu,1999,99(2):17-22. [67] Takahashi M,Tobishima S I,Takei K, et al . Reaction behavior of LiFePO 4 as a cathode material for rechargeable lithium batteries[J]. Solid State Ionics ,2002,148(3):283-289. [68] Yamada A,Chung S C,Hinokuma K. Optimized LiFePO 4 for lithium battery cathodes[J]. Journal of the Electrochemical Society ,2001,148(3):A224-A229. [69] Herle P S,Ellis B,Coombs N, et al . Nano-network electronic conduction in iron and nickel olivine phosphates[J]. Nature Materials ,2004,3(3):147-152. [70] Ouyang C,Shi S,Wang Z, et al . First-principles study of Li ion diffusion in LiFePO 4 [J]. Physical Review B ,2004,69(10):104303. [71] Shaju K M,Rao G V S,Chowdari B V R. Performance of layered Li(Ni 1/3 Co 1/3 Mn 1/3 )O 2 as cathode for Li-ion batteries[J]. Electrochimica Acta ,2002,48(2):145-151. [72] Macneil D D,Lu Z,Dahn J R. Structure and electrochemistry of LiNi x Co 1-2 x Mn x O 2 (0≤ x ≤1/2)[J]. Journal of the Electrochemical Society ,2002,149(10):A1332-A1336. [73] Ohzuku T,Makimura Y. Layered lithium insertion material of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 for lithium-ion batteries[J]. Chemistry Letters ,2001,(7):642-643. [74] Li D C,Muta T,Zhang L Q, et al . Effect of synthesis method on the electrochemical performance of LiNi 1/3 Mn 1/3 Co 1/3 O 2 [J]. Journal of Power Sources ,2004,132(1-2):150-155. [75] Sun Y,Ouyang C,Wang Z, et al . Effect of Co content on rate performance of LiMn 0.5- x Co 2 x Ni 0.5- x O 2 cathode materials for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2004,151(4):A504-A508. [76] Ohzuku T,Makimura Y. Layered lithium insertion material of LiNi 1/2 Mn 1/2 O 2 :A possible alternative to LiCoO 2 for advanced lithium-ion batteries[J]. Chemistry Letters ,2001,30(8):744-745. [77] Yang X Q,Mcbreen J,Yoon W S, et al . Crystal structure changes of LiMn 0.5 Ni 0.5 O 2 cathode materials during charge and discharge studied by synchrotron based in situ XRD[J]. Electrochemistry Communications ,2002,4(8):649-654. [78] Ohzuku T,Brodd R J. An overview of positive-electrode materials for advanced lithium-ion batteries[J]. Journal of Power Sources ,2007,174(2):449-456. [79] Reed J,Ceder G. Charge,potential,and phase stability of layered Li(Ni 0.5 Mn 0.5 )O 2 [J]. Electrochemical and Solid-State Letters ,2002,5(7):A145-A148. [80] Kang K,Meng Y S,Breger J, et al . Electrodes with high power and high capacity for rechargeable lithium batteries[J]. Science ,2006,311(5763):977-980. [81] Thackeray M M,Kang S H,Johnson C S, et al . Li 2 MnO 3 -stabilized LiMO 2 (M = Mn,Ni,Co)electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry ,2007,17(30):3112-3125. [82] Johnson C S,Kim J S,Lefief C,et al. The significance of the Li 2 MnO 3 component in 'composite' x Li 2 MnO 3 ·(1- x ) LiMn 0.5 Ni 0.5 O 2 electrodes[J]. Electrochemistry Communications ,2004,6(10):1085-1091. [83] Yu X,Lyu Y,Gu L,Wu H, et al . Understanding the rate capability of the high energy density Li-rich layered Li 1.2 Ni 0.15 Co 0.1 Mn 0.55 O 2 cathode material[J]. Advanced Energy Materials ,2013. doi: 101002/aenm201300950. [84] Thackeray M M,Kang S H,Johnson C S, et al . Li 2 MnO 3 -stabilized LiMO 2 (M= Mn,Ni,Co)electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry ,2007,17(30):3112-3125. [85] Grey C P,Yoon W S,Reed J, et al . Electrochemical activity of Li in the transition-metal sites of O 3 Li[Li (1-2 x )/3 Mn (2- x )/3 Ni x ]O 2 [J]. Electrochemical and Solid-Sate Letters ,2004,7(9):A290-A293. [86] Kang K,Ceder G. Factors that affect Li mobility in layered lithium transition metal oxides[J]. Physical Review B ,2006,74(9):094105. [87] Yabuuchi N,Yoshii K,Myung S T, et al . Detailed studies of a high-capacity electrode material for rechargeable batteries,Li 2 MnO 3 -LiCo 1/3 Ni 1/3 Mn 1/3 O 2 [J]. Journal of the American Chemical Society ,2011,133(12):404-4419. [88] Armstrong A R,Holzapfel M,Nov K P, et al . Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni 0.2 Li 0.2 Mn 0.6 ]O 2 [J]. Journal of the American Chemical Society ,2006,128(26):8694-8698. [89] Wu Y,Manthiram A. Effect of surface modifications on the layered solid solution cathodes (1- z )Li[Li 1/3 Mn 2/3 ]O 2 -( z )Li[Mn 0.5- y Ni 0.5- y Co 2 y ]O 2 [J]. Solid State Ionics ,2009,180(1):50-56. [90] Wang R,He X,He L, et al . Atomic structure of Li 2 MnO 3 after partial delithiation and re-lithiation[J]. Advanced Energy Materials ,2013,3(10):1358-1367. [91] Croy J R,Kim D,Balasubramanian M, et al . Countering the voltage decay in high capacity x Li 2 MnO 3 ·(1- x ) LiMO 2 electrodes(M= Mn,Ni,Co)for Li-ion batteries[J]. Journal of the Electrochemical Society ,2012,159(6):A781-A790. [92] Johnson C S,Li N,Lefief C, et al . Synthesis,characterization and electrochemistry of lithium battery electrodes: x Li 2 MnO 3 ·(1- x ) LiMn 0.333 Ni 0.333 Co 0.333 O 2 (0≤ x ≤0.7)[J]. Chemistry of Materials ,2008,20(19):6095-6106. [93] Gu M,Belharouak I,Zheng J, et al . Formation of the spinel phase in the layered composite cathode used in Li-ion batteries[J]. ACS Nano ,2013,7(1):760-767. [94] Gu M,Geng A,Belharouak I, et al . Nanoscale phase separation,cation ordering,and surface oxygen vacancy formation in pristine Li 1.2 Ni 0.2 Mn 0.6 O 2 for Li-ion batteries[J]. Chem. Mater. ,2013,25(11):2319-2326. [95] Zheng J,Li J,Zhang Z, et al . The effects of TiO 2 coating on the electrochemical performance of Li[Li 0.2 Mn 0.54 Ni 0.13 Co 0.13 ]O 2 cathode material for lithium-ion battery[J]. Solid State Ionics ,2008,179(27-32):1794-1799. [96] Kim J S,Johnson C,Vaughey J, et al . Pre-conditioned layered electrodes for lithium batteries[J]. Journal of Power Sources ,2006,153(2):258-264. [97] Kang S H,Thackeray M. Stabilization of x Li 2 MnO 3 ·(1- x ) LiMO 2 electrode surfaces(M= Mn,Ni,Co)with mildly acidic,fluorinated solutions[J]. Journal of the Electrochemical Society ,2008,155(4):A269-A275. [98] Kumagai N,Kim J M,Tsuruta S, et al . Structural modification of Li[Li 0.27 Co 0.20 Mn 0.53 ]O 2 by lithium extraction and its electrochemical property as the positive electrode for Li-ion batteries[J]. Electrochimica Acta ,2008,53(16):5287-5293. [99] Kim J H,Myung S T,Yoon C S, et al . Comparative study of LiNi 0.5 Mn 1.5 O 4- δ and LiNi 0.5 Mn 1.5 O 4 cathodes having two crystallographic structures:Fd-3m and P4 3 32[J]. Chemistry of Materials ,2004,16(5):906-914. [100] Santhanam R,Rambabu B. Research progress in high voltage spinel LiNi 0.5 Mn 1.5 O 4 material[J]. Journal of Power Sources ,2010, 195(17):5442-5451. [101] Liu J,Manthiram A. Understanding the improvement in the electrochemical properties of surface modified 5V LiMn 1.42 Ni 0.42 Co 0.16 O 4 spinel cathodes in lithium-ion cells[J]. Chemistry of Materials ,2009,21(8):1695-1707. [102] Shaju K M,Bruce P G. Nano-LiNi 0.5 Mn 1.5 O 4 spinel:A high power electrode for Li-ion batteries[J]. Dalton Transactions ,2008,40:5471-5475. [103] Arrebola J C,Caballero A,Cruz M, et al . Crystallinity control of a nanostructured LiNi 0.5 Mn 1.5 O 4 spinet via polymer-assisted synthesis:A method for improving its rate capability and performance in 5 V lithium batteries [J]. Adv. Funct. Mater. ,2006,16(14):1904-1912. [104] Wang L P,Li H,Huang X J, et al . A comparative study of Fd-3m and P4 3 32"LiNi 0.5 Mn 1.5 O 4 "[J]. Solid State Ionics ,2011,193(1):32-38. [105] Aklalouch M,Amarilla J M,Rojas R M, et al . Chromium doping as a new approach to improve the cycling performance at high temperature of 5V LiNi 0.5 Mn 1.5 O 4 -based positive electrode[J]. Journal of Power Sources ,2008,185(1):501-511. [106] Wang H,Tan T A,Yang P, et al . High-rate performances of the Ru-doped spinel LiNi 0.5 Mn 1.5 O 4 :Effects of doping and particle size[J]. The Journal of Physical Chemistry C ,2011,115(13):6102-6110. [107] Bhaskar A,Bramnik N N,Senyshyn A, et al . Synthesis,characterization and comparison of electrochemical properties of LiM 0.5 Mn 1.5 O 4 (M=Fe,Co,Ni)at different temperatures[J]. Journal of the Electrochemical Society ,2010,157(6):A689-A695. [108] Bhasksr A,Bramnik N N,Trots D M, et al . In situ synchrotron diffraction study of charge-discharge mechanism of sol-gel synthesized LiM 0.5 Mn 1.5 O 4 (M=Fe,Co)[J]. Journal of Power Sources ,2012,217:464-469. [109] Oh S M,Oh S W,Yoon C S, et al . High-performance carbon-LiMnPO 4 nanocomposite cathode for lithium batteries[J]. Advanced Functional Materials ,2010,20(19):3260-3265. [110] Wang F,Yang J,Nuli Y, et al . Highly promoted electrochemical performance of 5V LiCoPO 4 cathode material by addition of vanadium[J]. Journal of Power Sources ,2010,195(19):6884-6887. [111] Hu C,Yi H,Fang H, et al . Improving the electrochemical activity of LiMnPO 4 via Mn-site co-substitution with Fe and Mg[J]. Electrochemistry Communications ,2010,12(12):1784-1787. [112] Li G,Azuma H,Tohda M. LiMnPO 4 as the cathode for lithium batteries[J]. Electrochemical and Solid-State Letters ,2002,5(6):A135-A137. [113] Wang X,Yu X,Li H, et al . Li-storage in LiFe 1/4 Mn 1/4 Co 1/4 Ni 1/4 PO 4 solid solution[J]. Electrochemistry Communications ,2008,10(9):1347-1350. [114] Zhang B,Wang X,Li H, et al . Electrochemical performances of LiFe 1- x Mn x PO 4 with high Mn content[J]. Journal of Power Sources ,2011,196(16):6992-6996. [115] Zhang B,Wang X,Liu Z, et al . Enhanced electrochemical performances of carbon coated mesoporous LiFe 0.2 Mn 0.8 PO 4 [J]. Journal of the Electrochemical Society ,2010,157(3):A285-A288. [116] Yin S C,Grondey H,Strobel P, et al . Electrochemical property:Structure relationships in monoclinic Li 3- y V 2 (PO4) 3 [J]. Journal of the American Chemical Society ,2003,125(34):10402-10411. [117] Huang H,Yin S C,Kerr T, et al . Nanostructured composites:A high capacity,fast rate Li 3 V 2 (PO 4 ) 3 / carbon cathode for rechargeable lithium batteries[J]. Advanced Materials ,2002, 14(21):1525-1528. [118] Yin S C,Strobel P,Grondey H, et al . Li 2.5 V 2 (PO 4 ) 3 :A room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li 3 V 2 (PO 4 ) 3 [J]. Chemistry of Materials ,2004,16(8):1456-1465. [119] Dai C S,Chen Z Y,Jin H Z, et al . Synthesis and performance of Li 3 (V 1- x Mg x ) 2 (PO 4 ) 3 cathode materials[J]. Journal of Power Sources ,2010,195(17):5775 - 5779. [120] Kuang Q,Zhao Y M,An X N, et al . Synthesis and electrochemical properties of Co-doped Li 3 V 2 (PO 4 ) 3 cathode materials for lithium-ion batteries[J]. Electrochimica Acta ,2010,55(5):1575-1581. [121] Chen Y H,Zhao Y M,An X N, et al . Preparation and electrochemical performance studies on Cr-doped Li 3 V 2 (PO 4 ) 3 as cathode materials for lithium-ion batteries[J]. Electrochimica Acta ,2009,54(24):5844-5850. [122] Ai D J,Liu K Y,Lu Z G, et al . Aluminothermal synthesis and characterization of Li 3 V 2- x Al x (PO 4 ) 3 cathode materials for lithium ion batteries[J]. Electrochimica Acta ,2011,56(7):2823-2827. [123] Li Y,Zhou Z,Ren M, et al . Electrochemical performance of nanocrystalline Li 3 V 2 (PO 4 ) 3 /carbon composite material synthesized by a novel sol-gel method[J]. Electrochimica Acta ,2006,51(28):6498-6502. [124] Fu P,Zhao Y M,An X N, et al . Structure and electrochemical properties of nanocarbon-coated Li 3 V 2 (PO 4 ) 3 prepared by sol-gel method[J]. Electrochimica Acta ,2007,52(16):5281-5285. [125] Arroyo-de D M E,Armand M,Tarascon J M, et al . On-demand design of polyoxianionic cathode materials based on electronegativity correlations:An exploration of the Li 2 MSiO 4 system(M = Fe,Mn,Co,Ni)[J]. Electrochemistry Communications ,2006,8(8):1292-1298. [126] Dominko R,Bele M,Gaberscek M, et al . Structure and electrochemical performance of Li 2 MnSiO 4 and Li 2 FeSiO 4 as potential Li-battery cathode materials[J]. Electrochemistry Communications ,2006,8(2):217-222. [127] Nyten A,Abouimrane A,Armand M, et al . Electrochemical performance of Li 2 FeSiO 4 as a new Li-battery cathode material[J]. Electrochemistry Communications ,2005,7(2):156-160. [128] Belharouak I,Abouimrane A,Amine K. Structural and electro- chemical characterization of Li 2 MnSiO 4 cathode material[J]. J. Phys. Chem. C ,2009,113(48):20733-20737. [129] Lyness C,Delobel B,Armstrong A R, et al . The lithium intercalation compound Li 2 CoSiO 4 and its behaviour as a positive electrode for lithium batteries[J]. Chemical Communications ,2007,46:4890-4892. [130] Padhi A K,Manivannan V,Goodenough J B. Tuning the position of the redox couples in materials with NASICON structure by anionic substitution[J]. Journal of the Electrochemical Society ,1998, 145(5):1518-1520. [131] Nanjundaswamy K S,Padhi A K,Goodenough J B, et al . Synthesis,redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds[J]. Solid State Ionics ,1996,92(1-2):1-10. [132] Ati M,Melot B C,Chotard J N, et al . Synthesis and electro- chemical properties of pure LiFeSO 4 F in the triplite structure[J]. Electrochemistry Communications ,2011,13(11):1280-1283. [133] Liu Z J,Huang X J. Structural,electronic and Li diffusion properties of LiFeSO 4 F[J]. Solid State Ionics ,2010,181(25-26):1209-1213. [134] Ben Y M,Lemoigno F,Rousse G, et al . Origin of the 3.6V to 3.9V voltage increase in the LiFeSO 4 F cathodes for Li-ion batteries[J]. Energy & Environmental Science ,2012,5(11):9584-9594. [135] Dong J,Yu X,Sun Y, et al . Triplite LiFeSO 4 F as cathode material for Li-ion batteries[J]. Journal of Power Sources ,2013,244(15):716-720. [136] Dong Y Z,Zhao Y M,Fu P, et al . Phase relations of Li 2 O-FeO-B 2 O 3 ternary system and electrochemical properties of LiFeBO 3 compound[J]. Journal of Alloys and Compounds ,2008,461(1-2):585-590. [137] Dong Y Z,Zhao Y M,Shi Z D, et al . The structure and electrochemical performance of LiFeBO 3 as a novel Li-battery cathode material[J]. Electrochimica Acta ,2008,53(5):2339-2345. [138] Yamada A,Iwane N,Harada Y, et al . Lithium iron borates as high-capacity battery electrodes[J]. Advanced Materials ,2010, 22(32):3583-3587. [139] Chen L,Zhao Y M,An X N, et al . Structure and electrochemical properties of LiMnBO 3 as a new cathode material for lithium-ion batteries[J]. Journal of Alloys and Compounds ,2010,494(1-2):415-419. [140] Kim J C,Moore C J,Kang B, et al . Synthesis and electrochemical properties of monoclinic LiMnBO 3 as a Li intercalation material[J]. Journal of the Electrochemical Society ,2011,158(3):A309-A315. [141] Zu C X,Li H. Thermodynamic analysis on energy densities of batteries[J]. Energy & Environmental Science ,2011,4(8):2614-2624. [142] Li H,Richter G,Maier J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries[J]. Advanced Materials ,2003,15(9):736-739. [143] Li T,Li L,Cao Y L, et al . Reversible three-electron redox behaviors of FeF 3 nanocrystals as high-capacity cathode-active materials for Li-ion batteries[J]. The Journal of Physical Chemistry C ,2010,114(7):3190-3195. [144] Poizot P,Laruelle S,Grugeon S, et al . Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature ,2000,407(6803):496-499. [145] Li H,Wang Z,Chen L, et al . Research on advanced materials for Li-ion batteries[J]. Advanced Materials ,2009,21(45):4593-4607. [146] Alt H,Binder H,Khling A, et al . Investigation into the use of quinone compounds-for battery cathodes[J]. Electrochimica Acta ,1972,17(5):873-887. [147] Liang Y,Tao Z,Chen J. Organic electrode materials for rechargeable lithium batteries[J]. Advanced Energy Materials ,2012,2(7):742-769. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[8] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[9] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[10] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[11] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[12] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[13] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[14] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[15] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||