储能科学与技术 ›› 2016, Vol. 5 ›› Issue (6): 882-896.doi: 10.12028/j.issn.2095-4239.2016.0081
郑 超,李林艳,于学文,杨 斌,陈雪丹,黄 益,刘秋香,周 洲,吴奕环,顾应展,陈 宽,袁 峻,乔志军,傅冠生,阮殿波
收稿日期:
2016-10-15
修回日期:
2016-10-18
出版日期:
2016-11-01
发布日期:
2016-11-01
通讯作者:
阮殿波,总工程师,教授级高级工程师,E-mail:ruandianbo@crrccap.com。
作者简介:
郑超(1984—),男,博士,研究方向为纳米碳材料制备及超级电容器电极制备、工艺等;
ZHENG Chao, LI Linyan, YU Xuewen, YANG Bin, CHEN Xuedan, HUANG Yi, LIU Qiuxiang, ZHOU Zhou, WU Yihuan, GU Yingzhan, CHEN Kuan, YUAN Jun, QIAO Zhijun, FU Guansheng, RUAN Dianbo
Received:
2016-10-15
Revised:
2016-10-18
Online:
2016-11-01
Published:
2016-11-01
摘要: 该文是一篇近七个月的超级电容器文献评述,我们以“supercapacitor”为关键词检索了Web of Science从2016年3月1日至2016年9月30日上线的超级电容器研究论文,共有997篇,选取了其中100篇加以评论。双电层超级电容器主要研究了新型多孔碳材料、石墨烯等材料可控制备对其性能的影响。赝电容超级电容器的研究主要集中在金属氧化物复合材料、导电聚合物复合材料、杂质原子掺杂碳材料和新型赝电容材料等四个方面。混合型超级电容器包括水系混合型超级电容器和有机系混合型超级电容器两个方面的研究。
郑 超,李林艳,于学文,杨 斌,陈雪丹,黄 益,刘秋香,周 洲,吴奕环,顾应展,陈 宽,袁 峻,乔志军,傅冠生,阮殿波. 超级电容器百篇论文点评(2016.3.1—2016.9.30)[J]. 储能科学与技术, 2016, 5(6): 882-896.
ZHENG Chao, LI Linyan, YU Xuewen, YANG Bin, CHEN Xuedan, HUANG Yi, LIU Qiuxiang, ZHOU Zhou,WU Yihuan, GU Yingzhan, CHEN Kuan, YUAN Jun, QIAO Zhijun, FU Guansheng, RUAN Dianbo . Review of selected 100 recent papers for supercapacitors(Mar. 1,2016 to Sep. 30,2016)[J]. Energy Storage Science and Technology, 2016, 5(6): 882-896.
[1] LIU J,WANG X Y,GAO J,et al. Hollow porous carbon spheres with hierarchical nanoarchitecture for application of the high performance supercapacitors[J]. Electrochimica Acta,2016,211:183-192. [2] KLOSE M,REINHOLD R,PINKERT K,et al. Hierarchically nanostructured hollow carbon nanospheres for ultra-fast and long-life energy storage[J]. Carbon,2016,106:306-313. [3] ZEQUINE C,RANAWEERA C K,WANG Z,et al. High performance and flexible supercapacitors based on carbonized bamboo fibers for wide temperature applications[J]. Scientific Reports,2016,6:doi: 10.1038/SREP31704. [4] HUANG Y,LAI F L,ZHANG L S,et al. Elastic carbon aerogels reconstructed from electrospun nanofibers and graphene as three-dimensional networked matrix for efficient energy storage/conversion[J]. Scientific Reports,2016,6:doi: 10.1038/SREP31541. [5] SEVILLA M,FUERTES A B. A green approach to high-performance supercapacitor electrodes:The chemical activation of hydrochar with potassium bicarbonate[J]. ChemSusChem,2016,9(14):1880-1888. [6] WU C,XU J,DING J N,et al. High-performance supercapacitor based on the naoh activated d-glucose derived carbon[J]. Nano,2016,11(7):doi: 10.1142/S1793292016500752. [7] LI Z,LIU J,JIANG K,et al. Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors[J]. Nano Energy,2016,25:161-169. [8] PACHFULE P,SHINDE D,MAJUMDER M,et al. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework[J]. Nature Chemistry,2016,8(7):718-724. [9] HASEGAWA G,KANAMORI K,KIYOMURA T,et al. Hierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitors[J]. Chemistry of Materials,2016,28(11):3944-3950. [10] YADAV P,BASU A,SURYAWANSHI A,et al. Highly stable laser-scribed flexible planar microsupercapacitor using mushroom derived carbon electrodes[J]. Advenced Materials,2016,3:1-9. [11] ZHANG C Y,ZHU X H, [12] ZHANG G H,SONG Y,ZHANG H,et al. Radially aligned porous carbon nanotube arrays on carbon fibers:A hierarchical 3D carbon nanostructure for high-performance capacitive energy storage[J]. Advenced Materials,2016,26:3012-3020. [13] YUAN K,HU T,XU Y Z,et al. Engineering the morphology of carbon materials:2D porous carbon nanosheets for high-performance supercapacitors[J]. ChemElectroChem,2016,3:822-828. [14] ZANG P,GAO S Y,DANG L Q,et al. Green synthesis of holey graphene sheets and their assembly into aerogel with improved ion transport property[J]. Electrochimica Acta,2016,212:171-178. [15] ZHU J Y,CHILDRESS S A,KARAKAYA M,et al. Defect-engineered graphene for high-energy- and high-power-density supercapacitor devices[J]. Advanced Materials,2016,28:7185-7192. [16] CIESIELSKI A,SAMORÌ P. Supramolecular approaches to graphene:From self-assembly to molecule-assisted liquid-phase exfoliation[J]. Advanced Materials,2016,28:6030-6051. [17] DING Y J,ZHU J Q,WANG C H,et al. Multifunctional three-dimensional graphene nanoribbons composite sponge[J]. Carbon,2016,104:133-140. [18] XU J,TAN Z Q,ZENG W C,et al. A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes[J]. Advanced Materials,2016,28:5222-5228. [19] ZHU C,LIU T Y,QIAN F,et al. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores[J]. Nano Letter,2016,16(6):3448-3456. [20] QIN K Q,KANG J L,LI J J,et al. Continuously hierarchical nanoporous graphene film for flexible solid-state supercapacitors with excellent performance[J]. Nano Energy,2016,24:158-164. [21] WANG J,DING B,HAO X D,et al. A modified molten-salt method to prepare graphene electrode with high capacitance and low self-discharge rate[J]. Carbon,2016,102:255-261. [22] ANDREA L,FRANCESCA C,MARCO F,et al. A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate[J]. Advanced Energy Materials,2016,6(10):1600050-1600055. [23] CHENG H H,YE M H,ZHAO F,et al. A general and extremely simple remote approach toward graphene bulks with in situ multifunctionalization[J]. Advanced Materials,2016,28(17):3305-3312. [24] WANG B,LIU J Z,MIRRI F,et al. High-performance graphene-based supercapacitors made by scalable blade-coating approach[J]. Nanotechnology,2016,27(16):165402-165410. [25] ZHANG Q Q,ZHANG F,MEDARAMETLA S P,et al. 3D printing of graphene aerogels[J]. Small,2016,12(13):1702-1708. [26] ZHANG Y,ZOU Q H,HSU H S,et al. Morphology effect of vertical graphene on the high performance of supercapacitor electrode[J]. ACS Applied Materals & Interfaces,2016,8(11):7363-7369. [27] YUAN C J,LIN H B,LU H Y,et al. Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors[J]. Applied Energy,2016,178:260-268. [28] QI X H,ZHENG W J,LI X C,et al. Multishelled NiO hollow microspheres for high-performance supercapacitors with ultrahigh energy density and robust cycle life[J]. Scientific Reports,2016,6:doi: 10.1038/srep33241. [29] GONZALEZ Z,FERRARI B,et al. Use of polyelectrolytes for the fabrication of porous NiO films by electrophoretic deposition for supercapacitor electrodes[J]. Electrochimica Acta,2016,211:110-118. [30] JIANG H,MA H F,JIN Y,et al. Hybrid alpha-Fe2O3@Ni(OH)2 nanosheet composite for high-rate-performance supercapacitor electrode[J]. Scientific Reports,2016,6:doi: 10.1038/srep31751. [31] SINGH A K,SARKAR D,KARMAKAR K,et al. High-performance supercapacitor electrode based on cobalt oxide-manganese dioxide-nickel oxide ternary 1D hybrid nanotubes[J]. ACS Applied Materials &Interfaces,2016,8(32):20786-20792. [32] XU H T,ZHANG H J,et al. Substrate-free fabrication of self-supported V2O5 nanobelt arrays by a low-temperature solvothermal method with high electrochemical performance[J]. Nanotechnology,2016,27:doi: 10.1088/0957-4484/27/31/315402. [33] CHANG H W,LU Y R,et al. Electrochemical and in situ X-ray spectroscopic studies of MnO2/reduced graphene oxide nanocomposites as a supercapacitor[J]. Physical Chemistry Chemical Physical,2016:doi: 10.1039/C6CP [34] ZHANG Y Z,CHENG T,et al. A simple approach to boost capacitance:Flexible supercapacitors based on manganese oxides@MOFs via chemically induced in situ self-transformation [J]. Advanced Materials,2016:doi: 10.1002/adma.201600319 . [35] MA X J,KOLLA P,et al. Electrospun lignin-derived carbon nanofiber mats surface-decorated with MnO2 nanowhiskers as binder-free supercapacitor electrodes with high performance[J].Journal of Power Sources,2016,325:541-548. [36] LIAO Q Y,LI S Y,et al. Vertically-aligned graphene@Mn3O4 nanosheets for high-performance flexible all-solid-state symmetric supercapacitor[J]. Journal of Materials Chemistry A,2016,doi: 10.1039/C6TA02258H. [37] PARVEEN N,CHO M H,et al. Self-assembled 3D flower-like nickel hydroxide nanostructures and their supercapacitor applications[J]. Scientific Reports,2016:doi: 10.1038/srep27318. [38] XU C,LI Z H,et al. An ultralong,highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors[J]. Advanced Materials,2016,28:4105-4110. [39] YU B Z,ZHAO X D,et al. Hierarchical α-MnO2 tube-on-tube arrays with superior, structure-dependent pseudocapacitor performance synthesized via a selective dissolution and coherent growth mechanism[J]. Advanced Material Interfaces,2016,3:doi: 10.1002/admi.201500761. [40] CHOI C S,SIM H Y,et al. Elastomeric and dynamic MnO2/CNT core-shell structure coiled yarn supercapacitor[J]. Advanced Energy Materials,2016,6:doi: 10.1002/aenm.201502119. [41] YUAN L,WAN C,YE X,et al. Facial Synthesis of silver-incorporated conductive polypyrrole submicron spheres for supercapacitors[J]. Electrochimica Acta,2016,213:115-123. [42] CHANG W M,WANG C C,CHEN C Y. Plasma-induced polyaniline grafted on carbon nanotube-embedded carbon nanofibers for high-performance supercapacitors[J]. Electrochimica Acta,2016,212:130-140. [43] WANG H,SONG Y,ZHOU J,et al. High-performance supercapacitor materials based on polypyrrole composites embedded with core-sheath polypyrrole@MnMoO4 nanorods[J]. Electrochimica Acta,2016,212:775-783. [44] YANG M H,HONG S B,YOON J H,et al. Fabrication of flexible, redoxable, and conductive nanopillar arrays with enhanced electrochemical performance[J]. ACS Applied Materials & Interfaces,2016,8(34):22220-22226. [45] CHEN S,MA W,XIANG H,et al. Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors[J]. Journal of Power Sources,2016,319:271-280. [46] SONG X L,GUO J X,GUO M X,et al. Freestanding needle-like polyaniline-coal based carbon nanofibers composites for flexible supercapacitor[J]. Electrochimica Acta,2016,206:337-345. [47] GAO S,HE S,ZANG P,et al. Polyaniline nanorods grown on hollow carbon fibers as high-performance supercapacitor electrodes[J]. ChemElectroChem,2016,3(7):1142-1149. [48] XIE Y,WANG D,JI J. Preparation and supercapacitor performance of freestanding polypyrrole/polyaniline coaxial nanoarrays[J]. Energy Technology,2016,4(6):714-721. [49] FENG D Y,SONG Y,HUANG Z H,et al. Rate capability improvement of polypyrrole via integration with functionalized commercial carbon cloth for pseudocapacitor[J]. Journal of Power Sources,2016,324:788-797. [50] SHU K W,WANG,C Y,ZHAO C,et al. A free-standing graphene-polypyrrole hybrid paper via electropolymerization with an enhanced areal capacitance[J] Electrochimica Acta,2016,212:561-571. [51] ADMASSIE S,ELFWING A,INGANAS O,et al. Electrochemical synthesis and characterization of interpenetrating networks of conducting polymers for enhanced charge storage[J]. Advanced Materials Interfaces,2016,3(10):doi: 10.1002/admi.201500533. [52] QU G X,CHENG J L,LI X D,et al. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode[J]. Advanced Materials,2016,28(19):3646-3652. [53] HUANG Y,LI H F,WANG Z F,et al. Nanostructured polypyrrole as a flexible electrode material of supercapacitor[J]. Nano Energy,2016,22:22-438. [54] LEE K M,KIM M,LEE E,et al. Nylon 6, 6/polyaniline based sheath nanofibers for high-performance supercapacitors[J]. Electrochimica Acta,2016,213:124-131. [55] ZHU S,LI J,LI Q,et al. Space-confined synthesis of three-dimensional boron/nitrogen-doped carbon nanotubes/carbon nanosheets line-in-wall hybrids and their electrochemical energy storage applications[J]. Electrochimica Acta,2016,212:621-629. [56] SUN H,ZHU Y,YANG B,et al. Template-free fabrication of nitrogen-doped hollow carbon spheres for high-performance supercapacitors based on a scalable homopolymer vesicle[J]. Journal of Materials Chemistry A,2016,4(31):12088-12097. [57] WU J,RODRIGUES M T F,VAJTAI R,et al. Tuning the electrochemical reactivity of boron-and nitrogen-substituted graphene[J]. Advanced Materials,2016,28(29):6239-6246. [58] XIAO K,DING L X,LIU G,et al. Freestanding, hydrophilic nitrogen-doped carbon foams for highly compressible all solid-state supercapacitors[J]. Advanced Materials,2016,28 (28):doi: 10.1002/ADMA.201601125. [59] KUO N J,CHEN Y S,WU C W,et al. One-pot synthesis of hydrophilic and hydrophobic N-doped graphene quantum dots via exfoliating and disintegrating graphite flakes[J]. Scientific Reports,2016,6:doi: 10.1038/srep30426. [60] CHEN J,XU J,ZHOU S,et al. Nitrogen-doped hierarchically porous carbon foam:A free-standing electrode and mechanical support for high-performance supercapacitors[J]. Nano Energy,doi: http://dx.doi. [61] LAI F,MIAO Y E,ZUO L,et al. Biomass-derived nitrogen-doped carbon nanofiber network:A facile template for decoration of ultrathin nickel-cobalt layered double hydroxide nanosheets as high-performance asymmetric supercapacitor electrode[J]. Small,2016,12(24):3235–3244. [62] ANSARI S A,ANSARI M O,CHO M H,et al. Facile and scale up synthesis of red phosphorus-graphitic carbon nitride heterostructures for energy and environment applications[J]. Scientific Reports,2016,6:doi: 10.1038/srep27713. [63] PAWIN IAMPRASERTKUN ,KRITTAYAVATHANANON A,SAWANGPHRUK M. N-doped reduced graphene oxide aerogel coated on carboxyl-modified carbon fiber paper for high-performance ionic-liquid supercapacitors[J]. Carbon,2016,102:455-461. [64] DONG Y,WANG W,QUAN H,et al. Nitrogen-doped foam-like carbon plate consisting of carbon tubes as high-performance electrode materials for supercapacitors[J]. ChemElectroChem,2016,3(5):814-821. [65] YU X,KANG Y,PARK H S,et al. Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance[J]. Carbon,2016,101:49-56. [66] ZHU J,XU D,QIAN W,et al. Heteroatom-containing porous carbons derived from ionic liquid-doped alkali organic salts for supercapacitors[J]. Small,2016,12(14):1935-1944. [67] LIU C,WANG J,LI J,et al. Synthesis of N-doped hollow-structured mesoporous carbon nanospheres for high-performance supercapacitors[J]. ACS Applied Material Interfaces,2016,8(11):7194-7204. [68] LIN Z,BARBARA D,TABERNA P L,et al. Capacitance of Ti [69] LIU Y,LIU L,KONG L,et al. Supercapacitor electrode based on nano-vanadium nitride incorporated on porous carbon nanospheres derived from ionic amphiphilic block copolymers & vanadium-contained ion assembly systems[J]. Electrochimica Acta,2016,211:469-477. [70] HUANG L,ZHANG W,XIANG J,et al. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors[J]. Scientific Reports,2016,6:doi: 10.1038/srep31465. [71] WANG M,FEI H,ZHANG P,et al. Hierarchically layered MoS2/Mn3O4 hybrid architectures for electrochemical supercapacitors with enhanced performance[J]. Electrochimica Acta,2016,209:389-398. [72] KAKVAND P,RAHMANIFAR M S,EL-KADY M F,et al. Synthesis of NiMnO3/C nano-composite electrode materials for electrochemical capacitors[J]. Nanotechnology,2016,27(31):doi: 10.1088/0957-4484/27/31/315401. [73] SHEN J F,WU J J,PEI L Y,et al. CoNi2S4-graphene-2D-MoSe2 as an advanced electrode material for supercapacitors[J]. Advanced Energy Materials,2016,6(13):doi: 10.1002/aenm.201600341. [74] WANG Z,JIA W,JIANG M L,et al. One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor[J]. Nano Research,2016,9(7):2026-2033. [75] GARDNER D S,HOLZWARTH C W,LIU Y,et al. Integrated on-chip energy storage using passivated nanoporous-silicon electrochemical capacitors[J]. Nano Energy,2016,25:68-79. [76] SHEN J F,JI J,DONG P,et al. Novel FeNi2S4/TMD-based ternary composites for supercapacitor applications[J]. Jounral of Materials Chemistry A,2016,4(22):8844-8850. [77] JAVED M S,ZHANG C L,CHEN L,et al. Hierarchical mesoporous NiFe2O4 nanocone forest directly growing on carbon textile for high performance flexible supercapacitors[J]. Journal of Materials Chemistry A,2016,4(22):8851-8859. [78] WANG S Z,ZHANG L,SUN C L,et al. Gallium nitride crystals:Novel supercapacitor electrode materials[J]. Advanced Materials,2016,28(19):3768-3776. [79] CHEN Z H,WAN Z H,YANG T Z,et al. Preparation of nickel cobalt sulfide hollow nanocolloids with enhanced electrochemical property for supercapacitors application[J]. Scientific Reports,2016,6:25151-25158. [80] KHALID S, [81] BELLO A,BARZEGAR F,M J MADITO,et al. Stability studies of polypyrole-derived carbon based symmetric supercapacitor via potentiostatic floating test[J]. ELectrochimica Acta,2016,213:107-114. [82] MAKINO S,YAMAMOTO R,SUGIMOTO S,et al. Room temperature performance of 4 V aqueous hybrid supercapacitor using multi-layered lithium-doped carbon negative electrode[J]. Journal of Power Sources,2016,326:711-716. [83] QU G,JIA S F,WANG H,et al. Asymmetric supercapacitor based on porous N-doped carbon derived from pomelo peel and NiO arrays[J]. Applied Material Interfaces,2016,8:20822-20830. [84] XIONG G P,HE P G,WANG D N,et al. Hierarchical Ni-Co hydroxide petals on mechanically robust graphene petal foam for high-energy asymmetric supercapacitors[J]. Advanced Functional Materials,2016,26:5460-5470. [85] ZHANG J F,LIN J M,WU J H,et al. Excellent electrochemical performance hierarchical Co3O4@Ni3S2 core/shell nanowire arrays for asymmetric supercapacitors[J]. ELectrochimica Acta,2016,207:87-96. [86] ZHAO Y,HU L F,ZHAO S Y,et al. Preparation of MnCo2O4@Ni(OH)2 core-shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance[J]. Advanced Functional Materials,2016,26:4085-4093. [87] XIA C,JIANG Q,ZHAO C,et al. Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes[J]. Nano Energy,2016,24:78-86. [88] CAI W H,LAI T,LAI J W,et al. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density[J]. Scientific Reports,2016:doi: 10.1038/srep26890. [89] MA Z P,SHAO G J,FAN Y Q,et al. Construction of hierarchical α-MnO2 nanowires@ ultrathin δ-MnO2 nanosheets core-shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes[J]. Applied Materials Interfaces,2016,8:9050-9058. [90] LIU L,LANG J W,ZHANG P,et al. Facile synthesis of Fe2O3 nano-dots@nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte[J]. Applied Material Interfaces,2016,8:9335-9344. [91] TANG P Y,HAN L J,GENC A,et al. Synergistic effects in 3D honeycomb-like hematite nanoflakes/branched polypyrrole nanoleaves heterostructures as high-performance negative electrodes for asymmetric supercapacitors[J]. Nano Energy,2016,22:189-201. [92] TANG Y F,QIAO Y Q,MU S C,et al. All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials[J]. Scientific Reports,2016:doi: 10.1038/srep23289. [93] SHEN H H,HU C C,et al. A high-voltage asymmetric electrical double-layer capacitors using propylene carbonate[J]. Electrochemistry Communications,2016,70:23-27. [94] BINSON B,LASHMI P G,SHAIJUMON M M. Li-ion capacitor based on activated rice husk derived porous carbon with improved electrochemical performance[J]. Electrochimica Acta,2016,211:289-296. [95] KIM H K,LEE S H,Enhanced electrochemical performances of cylindrical hybrid supercapacitors using activated carbon/Li4-xMxTi5- [96] ARAVINDA L S,NAGARAJA K K,NAGARAJA H S,et al. Fabrication and performance evaluation of hybrid supercapacitor electrodes based on carbon nanotubes and sputtered TiO2[J]. Naotechnology,2016,27:doi: http://dx.doi.org/10.1088/0957-4484/ [97] CHOI H J,KIM J H,KIM H K,et al. Improving the electrochemical performance of hybrid supercapacitor using well-organized urchin-like TiO2 and activated carbon[J]. Electrochimica Acta,2016,208:202-210. [98] ALGUAIL A A,AL-EGGIELY A H,GVOZDENOVI M M,et al. [99] ZHENG X F,WANG H E,WANG C,et al. 3D interconnected macro-mesoporous electrode with self-assembled NiO nanodots for high-performance supercapacitor-like Li-ion battery[J]. Nano Energy,2016,22:269-277. [100] LIU C F,ZHHANG C K,SONG H Q,et al. Mesocrystal MnO cubes as anode for Li-ion capacitors[J]. Nano Energy,2016,22:290-300. |
[1] | 王宇作, 卢颖莉, 邓苗, 杨斌, 于学文, 荆葛, 阮殿波. 超级电容器自放电的研究进展[J]. 储能科学与技术, 2022, 11(7): 2114-2125. |
[2] | 林楠, KREWER Ulrike, ZAUSCH Jochen, STEINER Konrad, 林海波, 冯守华. 电化学能量储存和转换体系多物理场模型的建立及其应用[J]. 储能科学与技术, 2022, 11(4): 1149-1164. |
[3] | 郭铁柱, 周迪, 张传芳. MXenes胶体氧化的调控策略及其对超级电容器性能的影响[J]. 储能科学与技术, 2022, 11(4): 1165-1174. |
[4] | 佟永丽, 武祥. 金属有机框架衍生的Co3O4 电极材料及其电化学性能[J]. 储能科学与技术, 2022, 11(3): 1035-1043. |
[5] | 岳博文, 佟佳欢, 刘玉文, 霍锋. 离子液体电解液的模拟计算方法及应用[J]. 储能科学与技术, 2022, 11(3): 897-911. |
[6] | 韩雪, 邓伟, 周旭峰, 刘兆平. 石墨烯在储能领域应用的专利分析[J]. 储能科学与技术, 2022, 11(1): 335-349. |
[7] | 乔亮波, 张晓虎, 孙现众, 张熊, 马衍伟. 电池-超级电容器混合储能系统研究进展[J]. 储能科学与技术, 2022, 11(1): 98-106. |
[8] | 王凯, 侯朝霞, 李思瑶, 屈晨滢, 王悦, 孔佑健. 可拉伸全固态超级电容器的研究进展[J]. 储能科学与技术, 2021, 10(3): 887-895. |
[9] | 陈帅, 陈灵, 江浩. 氮掺杂无定形氧化钒纳米片阵列用于快充型准固态超级电容器[J]. 储能科学与技术, 2021, 10(3): 945-951. |
[10] | 毕志杰, 赵宁, 郭向欣. 基于氧化钨和普鲁士蓝的可变色超级电容器[J]. 储能科学与技术, 2021, 10(3): 952-957. |
[11] | 凤睿, 卢海, 刘心毅, 李浩, 李祥元. 正负极质量非对称设计对超级电容器性能的影响研究[J]. 储能科学与技术, 2021, 10(2): 491-496. |
[12] | 李向东, 廉睿, 吴佳美, 唐良辉, 乔志军, 阮殿波. 基于Fluent的超级电容器模组充放电循环的热仿真分析[J]. 储能科学与技术, 2021, 10(2): 732-737. |
[13] | 陈雪龙, 张 希, 许传华, 于学文, 阮殿波, 乔志军, 汪 俊, 王朝阳. 大容量动力型超级电容器存储性能[J]. 储能科学与技术, 2021, 10(1): 198-201. |
[14] | 朱佳静, 高筠. Water-in-salt电解液研究进展[J]. 储能科学与技术, 2020, 9(S1): 13-22. |
[15] | 朱蓝方, 刘冰. 石墨烯面间距和碳纳米管直径对双电层电容器电容的影响[J]. 储能科学与技术, 2020, 9(6): 1720-1728. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||